
LING 574 HW7

Due 11PM on May 16, 2024

In this assignment, you will

• Develop understanding of recurrent neural networks, especially as used for language modeling

• Implement components of data processing

• Implement masking of losses for an RNN language model

All files referenced herein may be found in /dropbox/23-24/574/hw7/ on patas.

1 Recurrent Neural Network Decoders/Taggers [35 pts]

Q1: Understanding Masking [15 pts] Suppose that we want to train a (word-level) language model
on the following two sentences:

<s> the cat sits </s>
<s> the model reads the sentence </s>

We saw in HW6 that padding is necessary to make these sentences have the same length so that they can
be batched together, as:

<s> the cat sits </s> PAD PAD
<s> the model reads the sentence </s>

Please answer the following questions about these sequences:

• In a recurrent language model, what would the input batch be? What would the target labels be?
[4 pts]

• Recurrent language models use a mask of ones and zeros to ‘eliminate’ the loss for PAD tokens. What
would the mask be for this batch? [3 pts]

• Suppose that we have the following per-token losses:[
0.1 0.3 0.2 0.4 0.7 0.5
0.2 0.6 0.1 0.8 0.9 0.4

]
What is the masked loss matrix? [3 pts]

• Why is it important to mask losses in this way? What might a model learn to do if the loss is not
masked? [5 pts]

Q2: Evaluating Language Models [20 pts] Given a corpus W = w1w2 . . . wN (so N is the number of
tokens in the corpus), a common (intrinsic) evaluation metric for language models is perplexity, defined as

PP (W ) = P (w1 . . . wN )−
1
N

This can be thought of as the inverse probability that the model assigns to the corpus, normalized by the
size of the corpus.

1



• Is a lower or higher perplexity better? [2 pts]

• For a recurrent language model, write an expression for P (w1 . . . wN ) using the chain rule of proba-
bility. How is this different from the expression for a feed-forward language model? [5
pts]

• Show that
PP (W ) = e−

1
N

∑N
i=1 logP (wi|w<i)

where w<i = w1w2 . . . wi−1 and log is the natural (base e) logarithm. [5 pts]

[Note: using base e measures perplexity in a unit known as nats. Using base 2 would measure it in
bits.]

• What is another name for the exponent − 1
N

∑N
i=1 logP (wi | w<i) in the above expression? [Hint: it

appears in training as well.] [3 pts]

• Suppose that the same text corpus were tokenized with two different vocabularies of different sizes
(perhaps, e.g., one replaces infrequent tokens with an UNK token) and two language models were
trained on the resulting tokenized text. All else being equal, would you expect perplexity to be lower
or higher for the model with a smaller vocabulary? What consequences does this have for comparing
different language models? [5 pts]

2 Implementing an RNN Character Language Model [25 pts]

In the coding portion of this assignment, you will implement (components of) an LSTM character-level
language model for the Stanford Sentiment Treebank, using an RNN as tagger.

Q1: Data processing Recall from the lectures that we can view language modeling as a sequence tagging
task. That is, each element of an input sequence is tagged with a certain target. This gets operationalized
in the data processing pipeline; you will generate the inputs/targets for one line of text.
In data.py, please implement the example from characters method. Please read the method signature
and docstring carefully for details on the input and output. [10 pts]

Q2: Masking the Loss In the written portion above, you explained why masking the loss is important
for a recurrent language model. Now, you will implement said masking. In run.py:

• Implement get mask, which generates the mask to apply to the losses. [6 pts]

• Implement mask loss, which takes per-token losses, masks out the ‘bad’ ones, and then returns a
mean. See the doc-string for details. [9 pts]

3 Running the Language Model [15 pts]

run.py contains a basic training loop for SST language modeling. It will record the training and dev loss
(and perplexity) at each epoch, and save the best model according to dev loss. Periodically (as specified
by a command-line flag), it also outputs generated text from the best model.

Q1: Default parameters Execute run.py with its default arguments. Paste below the texts that are
generated every 4 epochs, as well as the epoch with the best dev loss and the dev perplexity from that

2



epoch. In 2-3 sentences, describe any trends that you see. [Note that generated text will not necessarily
be completely coherent: recall that this is a character-level language model.] [5 pts]

Q2: Modify hyper-parameter(s) Re-run the training loop, modifying some combination of the following
hyper-parameters, which are specified by command-line flags:

• Hidden layer size

• Embedding size

• Learning rate

• Number of epochs [in particular: making it larger]

• Softmax temperature.

• L2 regularization coefficient.

• Dropout (probability with which neurons are dropped from the input and to the output during
training)

Include your model’s generated texts here. In 2-3 sentences, state exactly what hyper-parameter change(s)
you made, and what effects (if any) you see in terms of the dev set perplexity and text that the model
generated. [5 pts]

Q3: Comparison to feed-forward language model In 2-3 sentences, please explain what differences
you see in the text generated by this LSTM language model and the feed-forward language model that you
trained in HW5. What do you think may be causing these effects (or lack thereof)? [5 pts]

4 Testing your code

In the dropbox folder for this assignment, you will find a file test all.py with a few very simple unit tests
for the methods that you need to implement. You can verify that your code passes the tests by running
pytest from your code’s directory, with the course’s conda environment activated.

Submission Instructions

In your submission, include the following:

• readme.(txt|pdf) that includes your answers to §1 and §3.

• hw7.tar.gz containing:

– run hw7.sh. This should contain the code for activating the conda environment and your run
commands for §3 above. You can use run hw2.sh from the previous assignment as a template.

– data.py

– run.py

3


	Recurrent Neural Network Decoders/Taggers [35 pts]
	Implementing an RNN Character Language Model [25 pts]
	Running the Language Model [15 pts]
	Testing your code

