
Dependency Parsing 
and 

Feature-based Parsing
Ling 571 — Deep Processing Techniques for NLP 

Shane Steinert-Threlkeld

 1



Announcements
● HW2 grades out, HW3 soon 

● HW3 reference code available 
● Sym-linked from hw4 directory (example_cky.py) 

● HW4 slides, notes on OOV: not necessary in base implementation; can 
be used as your improvement (for coverage) 

● For hw4, can use: 

● nltk.tree.Tree 

● nltk.tree.Tree.productions()

2



Python Feature of the Week
● Dataclasses! (>= 3.7) 
● Auto-generates: __init__, __repr__, __eq__, etc 

● Enables field-based access (e.g. bp.split_point) 

● Can be extended just like any class 

● (frozen: not mutable, __hash__ will be added, can be used in sets etc) 

● Very useful for: 
● Simple custom data types 

● Configurations!

3

https://docs.python.org/3/library/dataclasses.html


Headline of the Week

4



Today
● Dependency Parsing 
● Transition-based Parsing 

● Feature-based Parsing 
● Motivation 

● Features 

● Unification

5



Dependency Parse Example: 
They hid the letter on the shelf

6

Argument Dependencies
Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det



Transition-Based Parsing
● Parsing defined in terms of sequence of transitions

7

http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772


Transition-Based Parsing
● Parsing defined in terms of sequence of transitions

● Alternative methods for learning/decoding 
● Most common model: Greedy classification-based approach 

● Very efficient: O(n)

7

http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772


Transition-Based Parsing
● Parsing defined in terms of sequence of transitions

● Alternative methods for learning/decoding 
● Most common model: Greedy classification-based approach 

● Very efficient: O(n)

● Best-known implementations: 
● Nivre’s MALTParser 
● Nivre et al (2006); Nivre & Hall (2007)

7

http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772


Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C

8



Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C
● A set of transitions between configurations

8



Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C
● A set of transitions between configurations

● A transition function between configurations

8



Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C
● A set of transitions between configurations

● A transition function between configurations

● An initialization function (for C0)

8



Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C
● A set of transitions between configurations

● A transition function between configurations

● An initialization function (for C0)

● A set of terminal configurations (“end states”)

8



Configurations
● A configuration for a sentence x is the triple (Σ, B, A): 

● Σ is a stack with elements corresponding to the nodes (words + ROOT) 
in x 

● B (aka the buffer) is a list of nodes in x 

● A is the set of dependency arcs in the analysis so far, 
● (wi, L, wj), where wx is a node in x and L is a dependency label

9



Transitions
● Transitions convert one configuration to another 
● Ci = t(Ci-1), where t is the transition 

● Dependency graph for a sent: 

● The set of arcs resulting from a sequence of transitions 

● The parse of the sentence is that resulting from the initial state through the 
sequence of transitions to a legal terminal state

10



Dependencies → Transitions
● To parse a sentence, we need the sequence of transitions that derives 

it

11



Dependencies → Transitions
● To parse a sentence, we need the sequence of transitions that derives 

it

● How can we determine sequence of transitions, given a parse?

11



Dependencies → Transitions
● To parse a sentence, we need the sequence of transitions that derives 

it

● How can we determine sequence of transitions, given a parse?

● This is defining our oracle function: 
● How to take a parse and translate it into a series of transitions

11



Dependencies → Transitions
● Many different oracles: 
● Nivre’s arc-standard 

● Nivre’s arc-eager 

● Non-projectivity with Attardi’s 

● …

12

http://www.aclweb.org/anthology/C12-1059
https://dl.acm.org/citation.cfm?id=1596307


Dependencies → Transitions
● Many different oracles: 
● Nivre’s arc-standard 

● Nivre’s arc-eager 

● Non-projectivity with Attardi’s 

● …

● Generally: 
● Use oracle to identify gold transitions 

● Train classifier to predict best transition in new config

12

http://www.aclweb.org/anthology/C12-1059
https://dl.acm.org/citation.cfm?id=1596307


Nivre’s Arc-Standard Oracle
● Words: w1,…,wn  
● w0 = ROOT

● Initialization: 
● Stack = [w0]; Buffer = [w1,…wn]; Arcs = ∅ 

● Termination: 
● Stack = σ; Buffer= [ ]; Arcs = A 
● for any σ and A

13



Nivre’s Arc-Standard Oracle
● Transitions are one of three: 
● Shift 

● Left-Arc 

● Right-Arc

14



Transitions: Shift
● Shift first element of buffer to top of stack. 
● [i][j,k,n,…][] → [i,j][k,n,…][]

15

i j k n

Stack Buffer Arcs



Transitions: Shift
● Shift first element of buffer to top of stack. 
● [i][j,k,n,…][] → [i,j][k,n,…][]

16

j
i k n

Stack Buffer Arcs



● Add arc from element at top of stack to second element on stack with 
dependency label l
● Pop second element from stack.

● [i,j] [k,n,…] A → [j] [k,n,…] A⋃[(j,l,i)]

Transitions: Left-Arc

17

j
i k n

Stack Buffer Arcs

l



Transitions: Left-Arc

18

k n

Stack Buffer Arcs

(j,l,i)

● Add arc from element at top of stack to second element on stack with 
dependency label l
● Pop second element from stack.

● [i,j] [k,n,…] A → [j] [k,n,…] A⋃[(j,l,i)]

j



● Add arc from second element on stack to top element on stack with 
dependency label l
● Pop top element from stack.

● [i,j] [k,n,…] A → [i] [k,n,…] A⋃[(i,l,j)]

Transitions: Right-Arc

19

j
i k n

Stack Buffer Arcs

l



Transitions: Right-Arc

20

k n

Stack Buffer Arcs

(i,l,j)i

● Add arc from second element on stack to top element on stack with 
dependency label l
● Pop top element from stack.

● [i,j] [k,n,…] A → [i] [k,n,…] A⋃[(i,l,j)]



Training Process
● Each step of the algorithm is a decision point between the three states 

● We want to train a model to decide between the three options at each 
step 
● (Reduce to a classification problem) 

● We start with: 
● A treebank 

● An oracle process for guiding the transitions 

● A discriminative learner to relate the transition to features of the current 
configuration

21



Training Process, Formally:
(Σ, B, A)

1) c ← c0(S)
2) while c is not terminal
3)     t ← o(c)  # Choose the (o)ptimal transition for the config c
4)     c ← t(c)  # Move to the next configuration
5) return Gc

22



Testing Process, Formally:
(Σ, B, A)

1) c ← c0(S)
2) while c is not terminal
3)     t ← λc(c) # Choose the transition given model parameters at c
4)     c ← t(c)  # Move to the next configuration
5) return Gc

23



Representing Configurations with Features
● Address 
● Locate a given word: 
● By position in stack 
● By position in buffer 
● By attachment to a word in buffer 

● Attributes 
● Identity of word 

● lemma for word 

● POS tag of word 

● Dependency label for word ← conditioned on previous decisions!

24



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

Left-Arc (Det) [ROOT, told, story] []

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

Left-Arc (Det) [ROOT, told, story] []
Right-Arc (dobj) [ROOT, told] []

They told him a story

subj iobj
dobj

det



Example:

25

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

Left-Arc (Det) [ROOT, told, story] []
Right-Arc (dobj) [ROOT, told] []
Right-Arc (root) [ROOT] []

They told him a story

subj iobj
dobj

det



Transition-Based Parsing 
Summary

● Shift-Reduce [reduce = pop] paradigm, bottom-up approach 

● Pros: 
● Single pass, O(n) complexity 

● Reduce parsing to classification problem; easy to introduce new features 

● Cons: 
● Only makes local decisions, may not find global optimum 

● Does not handle non-projective trees without hacks 
● e.g. transforming nonprojective trees to projective in training data; 

reconverting after

26



Other Notes
● …is this a parser? 
● No, not really! 

● Transforms problem into sequence labeling task, of a sort. 
● e.g. (SH, LA, SH, RA, SH, SH, LA, RA) 
● Sequence score is sum of transition scores

27



Other Notes
● Classifier: Any 
● Originally, SVMs 

● Currently: NNs (LSTMs, pre-trained Transformer-based) 

● State-of-the-art: UAS: 97.2%; LAS: 95.7% 
● http://nlpprogress.com/english/dependency_parsing.html

28

http://nlpprogress.com/english/dependency_parsing.html


Other Notes
● Classifier: Any 
● Originally, SVMs 

● Currently: NNs (LSTMs, pre-trained Transformer-based) 

● State-of-the-art: UAS: 97.2%; LAS: 95.7% 
● http://nlpprogress.com/english/dependency_parsing.html

28

Story time!

http://nlpprogress.com/english/dependency_parsing.html


Parsey McParseface

29



Parsey McParseface

29
https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html 

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html


Parsey McParseface

29
https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html 

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html


Parsey McParseface

30



Parsey McParseface

30



Parsey McParseface

31



Parsey McParseface

31



Parsey McParseface

31

Great paper

Many methodological 
lessons on how to improve 

transition-based 
dependency parsing

BUT: don’t believe (or at 
least beware) the hype!



Dependency Parsing: 
Summary

● Dependency Grammars: 
● Compactly represent pred–arg structure 

● Lexicalized, localized 

● Natural handling of flexible word order

32



Dependency Parsing: 
Summary

● Dependency Grammars: 
● Compactly represent pred–arg structure 

● Lexicalized, localized 

● Natural handling of flexible word order

● Dependency parsing: 
● Conversion to phrase structure trees 

● Graph-based parsing (MST), efficient non-proj O(n2) 
● Transition-based parser 
● MALTparser: very efficient O(n)
● Optimizes local decisions based on many rich features

32



Roadmap
● Dependency Parsing 
● Transition-based Parsing 

● Feature-based Parsing 
● Motivation 

● Features 

● Unification

33



Feature-Based Parsing

34



Constraints & Compactness
● S → NP VP 
● They run. 

● He runs.

35



Constraints & Compactness
● S → NP VP 
● They run. 

● He runs.

● But… 

● * They runs

● * He run

● * He disappeared the flight

● Violate agreement (number/person), subcategorization -> over-
generation

35



Enforcing Constraints with CFG Rules
● Agreement 
● S → NPsg+3p VPsg+3p 

● S → NPpl+3p VPpl+3p

36



Enforcing Constraints with CFG Rules
● Agreement 
● S → NPsg+3p VPsg+3p 

● S → NPpl+3p VPpl+3p

● Subcategorization: 
● VP → Vtransitive NP 

● VP → Vintransitive 

● VP → Vditransitive NP NP

● Explosive, and loses key generalizations

36



Feature Grammars
● Need compact, general constraint

37



Feature Grammars
● Need compact, general constraint

● S → NP VP [iff NP and VP agree]

37



Feature Grammars
● Need compact, general constraint

● S → NP VP [iff NP and VP agree]

● How can we describe agreement & subcategory? 
● Decompose into elementary features that must be consistent 
● e.g. Agreement on number, person, gender, etc

37



Feature Grammars
● Need compact, general constraint

● S → NP VP [iff NP and VP agree]

● How can we describe agreement & subcategory? 
● Decompose into elementary features that must be consistent 
● e.g. Agreement on number, person, gender, etc

● Augment CF rules with feature constraints 
● Develop mechanism to enforce consistency 

● Elegant, compact, rich representation

37



Feature Representations
● Fundamentally Attribute-Value pairs 
● Values may be symbols or feature structures 

● Feature path: list of features in structure to value 

● “Reentrant feature structure” — sharing a structure 

● Represented as 
● Attribute-Value Matrix (AVM) 

● Directed Acyclic Graph (DAG)

38



Attribute-Value Matrices (AVMs)

39

2

66664

ATTRIBUTE1 value1
ATTRIBUTE2 value2
...
ATTRIBUTEn valuen

3

77775



AVM Examples

40

(A)

(B)

(C)

(D)

"
NUMBER PL
PERSON 3

#

2

64
CAT NP
NUMBER PL
PERSON 3

3

75

2

664

CAT NP

AGREEMENT
"
NUMBER PL
PERSON 3

#
3

775

2

6666664

CAT S

HEAD

2

6664

AGREEMENT 1

"
NUMBER PL
PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

7775

3

7777775



AVM vs. DAG

41

2

664

CAT NP

AGREEMENT
"
NUMBER PL
PERSON 3

#
3

775

CAT

AGREEMENT

NP

NUMBER SG

3rdPERSON



42

2

6666664

CAT S

HEAD

2

6664

AGREEMENT 1

"
NUMBER PL
PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

7775

3

7777775

CAT

HEAD

S

SUBJECT

1

AGREEMENT

AGREEMENT

SG

3rd

NUMBER

PERSON



Using Feature Structures
● Feature Structures provide formalism to specify constraints 

● …but how to apply the constraints? 

● Unification

43



Unification: 
⨆

● Two key roles: 
● Merge compatible feature structures 

● Reject incompatible feature structures

44



Unification: 
⨆

● Two key roles: 
● Merge compatible feature structures 

● Reject incompatible feature structures

● Two structures can unify if: 
● Feature structures match where both have values 

● Feature structures differ only where one value is missing or underspecified 
● Missing or underspecified values are filled with constraints of other

44



Unification: 
⨆

● Two key roles: 
● Merge compatible feature structures 

● Reject incompatible feature structures

● Two structures can unify if: 
● Feature structures match where both have values 

● Feature structures differ only where one value is missing or underspecified 
● Missing or underspecified values are filled with constraints of other

● Result of unification incorporates constraints of both

44



● Less specific feature structure subsumes more specific feature structure

Subsumption

45



● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes  FS G iff: 
● For every feature x in F, F(x) subsumes G(x)
● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

Subsumption

45



● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes  FS G iff: 
● For every feature x in F, F(x) subsumes G(x)
● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

● Examples: 

● A =                                           B = 

C =                                    

Subsumption

45

h
NUMBER SG

i h
PERSON 3

i

"
NUMBER SG
PERSON 3

#



● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes  FS G iff: 
● For every feature x in F, F(x) subsumes G(x)
● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

● Examples: 

● A =                                           B = 

C =                                    

Subsumption

45

h
NUMBER SG

i h
PERSON 3

i

"
NUMBER SG
PERSON 3

#
● A subsumes C 



● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes  FS G iff: 
● For every feature x in F, F(x) subsumes G(x)
● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

● Examples: 

● A =                                           B = 

C =                                    

Subsumption

45

h
NUMBER SG

i h
PERSON 3

i

"
NUMBER SG
PERSON 3

#
● A subsumes C 
● B subsumes C



● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes  FS G iff: 
● For every feature x in F, F(x) subsumes G(x)
● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

● Examples: 

● A =                                           B = 

C =                                    

Subsumption

45

h
NUMBER SG

i h
PERSON 3

i

"
NUMBER SG
PERSON 3

#
● A subsumes C 
● B subsumes C
● B & A don’t subsume



Unification Examples
● Identical

46

h
NUMBER SG

i
⨆

h
NUMBER SG

i
=

h
NUMBER SG

i



Unification Examples
● Identical

● Underspecified

46

h
NUMBER SG

i
⨆

h
NUMBER SG

i
=

h
NUMBER SG

i

h
NUMBER SG

i
⨆ =

h
NUMBER SG

ih i



Unification Examples
● Identical

● Underspecified

● Different Specs

46

h
NUMBER SG

i
⨆

h
NUMBER SG

i
=

h
NUMBER SG

i

h
NUMBER SG

i
⨆ =

h
NUMBER SG

ih i

h
NUMBER SG

i
⨆ =

h
PERSON 3

i "
NUMBER SG
PERSON 3

#



Unification Examples
● Identical

● Underspecified

● Different Specs

● Conflicting Specs

46

h
NUMBER SG

i
⨆

h
NUMBER SG

i
=

h
NUMBER SG

i

h
NUMBER SG

i
⨆ =

h
NUMBER SG

ih i

h
NUMBER SG

i
⨆ =

h
PERSON 3

i "
NUMBER SG
PERSON 3

#

h
NUMBER SG

i
⨆ =

h
NUMBER PL

i
∅



Larger Unification Example

47

⨆
2

4 SUBJECT

2

4 AGREEMENT
"
PERSON 3
NUMBER SG

#3

5

3

5

2

4
AGREEMENT 1

SUBJECT
h
AGREEMENT 1

i
3

5 =
2

6664

AGREEMENT 1

SUBJECT

2

4 AGREEMENT 1

"
PERSON 3
NUMBER SG

#3

5

3

7775



One More Unification Example

48

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



One More Unification Example

48

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



One More Unification Example

48

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆

NUMBER SG

3rdPERSON

AGREEMENT1

AGREEMENT

SG

3rd

NUMBER

PERSON



One More Unification Example

48

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆

NUMBER SG

3rdPERSON

AGREEMENT1

AGREEMENT

SG

3rd

NUMBER

PERSON

✔



Unification

49

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



Unification

49

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



Unification

49

1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



Unification

49

1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



Unification

49

AGREEMENT

PL

3rd

NUMBER

PERSON

SUBJECT1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



Unification

49

AGREEMENT

PL

3rd

NUMBER

PERSON

SUBJECT1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



Unification

49

∅= Failure!

✘AGREEMENT

PL

3rd

NUMBER

PERSON

SUBJECT1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



Rule Representation

50

● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’



Rule Representation

50

Pron

⟨PRON

● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’



Rule Representation

50

AGREEMENT

Pron

⟨PRON AGREEMENT

● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’



Rule Representation

50

AGREEMENT

PERSON

Pron

⟨PRON AGREEMENT PERSON⟩

● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’



Rule Representation

50

AGREEMENT

PERSON 3rd

Pron

⟨PRON AGREEMENT PERSON⟩ = 3rd

● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’



● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● NP → PRON

Rule Representation

51

⟨NP AGREEMENT PERSON⟩ = ⟨PRON AGREEMENT PERSON⟩

AGREEMENT

PERSON

NP

AGREEMENT

PERSON 3rd

Pron



● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● NP → PRON

Rule Representation

51

⟨NP AGREEMENT PERSON⟩ = ⟨PRON AGREEMENT PERSON⟩

AGREEMENT

PERSON

NP

AGREEMENT

PERSON 3rd

Pron
“unifiable”



Agreement with Heads and Features
● 𝛽 → 𝛽1 … 𝛽n        

{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

52

S → NP VP Det → this
⟨NP AGREEMENT⟩ = ⟨VP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = sg

S → Aux NP VP Det → these
⟨Aux AGREEMENT⟩ = ⟨NP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = pl

NP → Det Nominal Verb → serve
⟨Det AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩
⟨NP AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩

⟨Verb AGREEMENT NUMBER⟩ = pl

Aux → does Noun → flight
⟨AUX AGREEMENT NUMBER⟩ = sg
⟨AUX AGREEMENT PERSON⟩ = 3rd

⟨Noun AGREEMENT NUMBER⟩ = sg



Simple Feature Grammars in NLTK
● S → NP VP

53



Simple Feature Grammars
● S -> NP[NUM=?n] VP[NUM=?n]

● NP[NUM=?n] -> N[NUM=?n]

● NP[NUM=?n] -> PropN[NUM=?n]

● NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]

● Det[NUM=sg] -> 'this' | 'every’

● Det[NUM=pl] -> 'these' | 'all’

● N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child’

● N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'

54



Parsing with Features
>>> cp = load_parser('grammars/book_grammars/
feat0.fcfg’)  
>>> for tree in cp.parse(tokens): 
...     print(tree)

(S[] (NP[NUM='sg'] 
  (PropN[NUM='sg'] Kim)) 
    (VP[NUM='sg', TENSE='pres']
      (TV[NUM='sg', TENSE='pres'] likes)
      (NP[NUM='pl'] (N[NUM='pl'] children))))

55



Feature Applications
● Subcategorization 
● Verb-Argument constraints 
● Number, type, characteristics of args 
● e.g. is the subject animate? 
● Also adjectives, nouns 

● Long-distance dependencies 
● e.g. filler–gap relations in wh-questions 

● “Which flight do you want me to have the travel agent book?”

56



Morphosyntactic Features
● Grammatical feature that influences morphological or syntactic 

behavior 
● English: 
● Number: 
● Dog, dogs 

● Person: 
● am; are; is 

● Case: 
● I / me; he / him; etc.

57



Semantic Features
● Grammatical features that influence semantic (meaning)  behavior of 

associated units 

● E.g.: 
● ?The rocks slept. ? Colorless green ideas sleep furiously. ? I handed the rock a book. 

● Many proposed: 
● Animacy: +/-

● Human: +/-

● Adult: +/-

● Liquid: +/-

58



Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

59



Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

59



Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

59



Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

● *The climber [reached the summit] [for six hours].

59



Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

● *The climber [reached the summit] [for six hours].

● Contrast: 
● Achievement (in an instant) vs activity (for a time)

59


