
PCFGs:
Parsing & Evaluation

LING 571 — Deep Processing Techniques for NLP
Shane Steinert-Threlkeld

 1

Announcements
● HW2 due tonight at 11:59pm
● readme.{txt|pdf}
● Separate upload to Canvas
● NOT in hw2.tar.gz

● Run check_hw2.sh before submitting! (Also: tar -tf hw2.tar.gz to preview.)
● Flat structure; just files, no directories, inside tar-ball
● Include only the files we ask for, not more

● Start symbol: either “%start S” or first nonterminal
● NB: needs to be readable by nltk’s grammar loading methods

● Use nltk.data.load: best to use “file:path/to/grammar.cfg” as argument
● Docs: https://www.nltk.org/api/nltk.data.html#nltk.data.load

● See hw2 slides as well on website for above points

2

https://www.nltk.org/api/nltk.data.html#nltk.data.load

Roadmap
● CKY + back-pointers example

● PCFGs

● PCFG Parsing (PCKY)

● Inducing a PCFG

● Evaluation

● [Earley parsing]

● HW3 + collaboration

3

CKY + Back-pointers Example

4

cky_table[0,6][S] = {(NP, (0,1),
 VP, (1,6))}

5

NP,
Pronoun

[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

S

NP VP

I prefer a flight on TWA

NP,
Pronoun

[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

6I prefer a flight on TWA

cky_table[0,6][S] = {(NP, (0,1),
 VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}

S

NP

I

VP

cky_table[0,6][S] = {(NP, (0,1),
 VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
 NP, (2,6)),
 (X2, (1,4),
 PP, (4,6))}

NP,
Pronoun

[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

7

S

NP

I

VP

Verb NP

I prefer a flight on TWA

cky_table[0,6][S] = {(NP, (0,1),
 VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
 NP, (2,6)),
 (X2, (1,4),
 PP, (4,6))}
cky_table[1,2][Verb] = {(‘prefer’)}

NP,
Pronoun

[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

8

S

NP

I

VP

Verb

prefer

NP

I prefer a flight on TWA

cky_table[0,6][S] = {(NP, (0,1),
 VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
 NP, (2,6)),
 (X2, (1,4),
 PP, (4,6))}
cky_table[1,2][Verb] = {(‘prefer’)}
cky_table[2,6][NP] = {(Det, (2,3),
 Nom, (3,6)}

NP,
Pronoun

[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

9

S

NP

I

VP

Verb

prefer

NP

Det Nom

I prefer a flight on TWA

cky_table[0,6][S] = {(NP, (0,1),
 VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
 NP, (2,6)),
 (X2, (1,4),
 PP, (4,6))}
cky_table[1,2][Verb] = {(‘prefer’)}
cky_table[2,6][NP] = {(Det, (2,3),
 Nom, (3,6)}

cky_table[2,3][Det] = {(‘a’)}

NP,
Pronoun

[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

10I prefer a flight on TWA

S

NP

I

VP

Verb

prefer

NP

Det

a

Nom

cky_table[0,6][S] = {(NP, (0,1),
 VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
 NP, (2,6)),
 (X2, (1,4),
 PP, (4,6))}
cky_table[1,2][Verb] = {(‘prefer’)}
cky_table[2,6][NP] = {(Det, (2,3),
 Nom, (3,6)}

cky_table[2,3][Det] = {(‘a’)}

NP,
Pronoun

[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

11I prefer a flight on TWA

S

NP

I

VP

Verb

prefer

NP

Det

a

NomExercise: finish the parse!

NP,
Pronoun

[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

12

S

NP

I

VP

X2 PP

I prefer a flight on TWA

S

NP

I

VP

Verb NP

cky_table[0,6][S] = {(NP, (0,1),
 VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
 NP, (2,6)),
 (X2, (1,4),
 PP, (4,6))}

Probabilistic Context-Free Grammars

13

Probabilistic Context-free Grammars:
Roadmap

● Motivation: Ambiguity

● Approach:
● Definition

● Disambiguation

● Parsing

● Evaluation

● Enhancements

14

Motivation
● What about ambiguity?

● Current algorithm can represent it

● …can’t resolve it.

15

Probabilistic Parsing
● Provides strategy for solving disambiguation problem
● Compute the probability of all analyses

● Select the most probable

● Employed in language modeling for speech recognition
● N-gram grammars predict words, constrain search

● Also, constrain generation, translation

16

PCFGs: Formal Definition

17

N a set of non-terminal symbols (or variables)

PCFGs: Formal Definition

17

N a set of non-terminal symbols (or variables)

Σ a set of terminal symbols (disjoint from N)

PCFGs: Formal Definition

17

N a set of non-terminal symbols (or variables)

Σ a set of terminal symbols (disjoint from N)

R
a set of rules of productions, each of the form A → 𝜷[p], where A is a non-terminal where

A is a non-terminal, 𝜷 is a string of symbols from the infinite set of strings (Σ⋃N)∗ and p is

a number between 0 and 1 expressing P(𝜷|A)

PCFGs: Formal Definition

17

N a set of non-terminal symbols (or variables)

Σ a set of terminal symbols (disjoint from N)

R
a set of rules of productions, each of the form A → 𝜷[p], where A is a non-terminal where

A is a non-terminal, 𝜷 is a string of symbols from the infinite set of strings (Σ⋃N)∗ and p is

a number between 0 and 1 expressing P(𝜷|A)

S a designated start symbol

PCFGs
● Augment each production with probability that LHS will be expanded

as RHS
● P(A→𝛽)
● P(A→𝛽|A)
● P(𝛽|A)
● P(RHS | LHS)

● NB: the first is often used; but the latter are what’s really meant.

18

● Sum over all possible expansions is 1

● A PCFG is consistent if sum of probabilities of all sentences in language
is 1
● Recursive rules often yield inconsistent grammars (Booth & Thompson, 1973)

PCFGs

19

∑
β

P(A → β) = 1

https://dl.acm.org/citation.cfm?id=1310632

Example PCFG: Augmented ℒ1

20

Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]

S → Aux NP VP [.15] Noun → book [.10] | flight [.30] | meal [.15] | money [0.5]
 | flights [0.40] | dinner [.10]S → VP [.05]

NP → Pronoun [.35] Verb → book [.30] | include [.30] | prefer [.40]
NP → Proper-Noun [.30] Pronoun → I [.40] | she [.05] | me [.15] | you [.40]
NP → Det Nominal [.20] Proper-Noun → Houston [.60] | NWA [.40]

NP → Nominal [.15] Aux → does [.60] | can [.40]
Nominal → Noun [.75] Preposition → from [.30] | to [.30] | on [.20] | near [.15]

 | through [.05]Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]

VP → Verb [.35]
VP → Verb NP [.20]

VP → Verb NP PP [.10]
VP → Verb PP [.15]

VP → Verb NP NP [.05]
VP → VP PP [.15]

PP → Preposition NP [1.0]

Example PCFG: Augmented ℒ1

21

Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]

S → Aux NP VP [.15] Noun → book [.10] | flight [.30] | meal [.15] | money [0.5]
 | flights [0.40] | dinner [.10]S → VP [.05]

NP → Pronoun [.35] Verb → book [.30] | include [.30] | prefer [.40]
NP → Proper-Noun [.30] Pronoun → I [.40] | she [.05] | me [.15] | you [.40]
NP → Det Nominal [.20] Proper-Noun → Houston [.60] | NWA [.40]

NP → Nominal [.15] Aux → does [.60] | can [.40]
Nominal → Noun [.75] Preposition → from [.30] | to [.30] | on [.20] | near [.15]

 | through [.05]Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]

VP → Verb [.35]
VP → Verb NP [.20]

VP → Verb NP PP [.10]
VP → Verb PP [.15]

VP → Verb NP NP [.05]
VP → VP PP [.15]

PP → Preposition NP [1.0]

● A PCFG assigns probability to each parse tree T for input S

● Probability of T: product of all rules used to derive T

Disambiguation

22

P(T, S) =
n

∏
i=1

P(RHSi |LHSi)

P(T, S) = P(T)P(S |T) = P(T)

23

S

NP

Pron

I

VP

Verb

prefer

NP

Det

a

Nom

Noun

flight

PP

P

on

NP

NNP

TWA

S

NP

Pron

I

VP

Verb

prefer

NP

Det

a

Nom

Noun

flight

PP

P

on

NP

NNP

TWA

S → NP VP [0.8] S → NP VP [0.8]
NP → Pron [0.35] NP → Pron [0.35]
Pron → I [0.4] Pron → I [0.4]

VP → V NP PP [0.1] VP → V NP [0.2]
V → prefer [0.4] V → prefer [0.4]

NP → Det Nom [0.2] NP → Det Nom [0.2]
Det → a [0.3] Det → a [0.3]

Nom → N [0.75] Nom → Nom PP [0.05]
N → flight [0.3] Nom → N [0.75]
PP → P NP [1.0] N → flight [0.3]

P → on [0.2] PP → P NP [1.0]
NP → NNP [0.3] P → on [0.2]

NNP → NWA [0.4] NP → NNP [0.3]
NNP → NWA [0.4]

23

S

NP

Pron

I

VP

Verb

prefer

NP

Det

a

Nom

Noun

flight

PP

P

on

NP

NNP

TWA

S

NP

Pron

I

VP

Verb

prefer

NP

Det

a

Nom

Noun

flight

PP

P

on

NP

NNP

TWA

S → NP VP [0.8] S → NP VP [0.8]
NP → Pron [0.35] NP → Pron [0.35]
Pron → I [0.4] Pron → I [0.4]

VP → V NP PP [0.1] VP → V NP [0.2]
V → prefer [0.4] V → prefer [0.4]

NP → Det Nom [0.2] NP → Det Nom [0.2]
Det → a [0.3] Det → a [0.3]

Nom → N [0.75] Nom → Nom PP [0.05]
N → flight [0.3] Nom → N [0.75]
PP → P NP [1.0] N → flight [0.3]

P → on [0.2] PP → P NP [1.0]
NP → NNP [0.3] P → on [0.2]

NNP → NWA [0.4] NP → NNP [0.3]
NNP → NWA [0.4]

~1.452 × 10-6 ~1.452 × 10-7

Parsing Problem for PCFGs
● Select T such that (s.t.)

● String of words S is yield of parse tree

● Select the tree T̂ that maximizes the probability of the parse

24

̂T(S) = argmax
T s.t. S=yield(T)

P(T)

Application:
Language Modeling

● n-grams helpful for modeling the probability of a string

25

Application:
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:

25

Application:
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:
● Must use 10+-grams… too sparse

25

Application:
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:
● Must use 10+-grams… too sparse

● Approximate using conditioning on limited context:

25

P(wi |wi−1) =
P(wi−1, wi)

P(wi−1)

Application:
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:
● Must use 10+-grams… too sparse

● Approximate using conditioning on limited context:

● PCFGs are able to give probability of entire string without as bad
sparsity

25

P(wi |wi−1) =
P(wi−1, wi)

P(wi−1)

Application:
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:
● Must use 10+-grams… too sparse

● Approximate using conditioning on limited context:

● PCFGs are able to give probability of entire string without as bad
sparsity

● Model probability of syntactically valid sentences

25

P(wi |wi−1) =
P(wi−1, wi)

P(wi−1)

Application:
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:
● Must use 10+-grams… too sparse

● Approximate using conditioning on limited context:

● PCFGs are able to give probability of entire string without as bad
sparsity

● Model probability of syntactically valid sentences
● Not just probability of sequence of words

25

P(wi |wi−1) =
P(wi−1, wi)

P(wi−1)

PCFGs: Parsing

26

Probabilistic CKY (PCKY)
● Like regular CKY
● Assumes grammar in Chomsky Normal Form (CNF)
● A → B C
● A → w
● Represent input with indices b/t words:
● 0 Book 1 that 2 flight 3 through 4 Houston 5

27

Probabilistic CKY (PCKY)
● For input string length n and non-terminals V
● Cell [i, j, A] in (n+1) × (n+1) × V matrix

● Contains probability that A spans [i, j]

28

PCKY Algorithm

29

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar }
 table[j–1, j, A] ← P(A → words[j])
for i ← from j–2 downto 0 do
for k ← i + 1 to j–1 do
for all { A | A → B C ∈ grammar,
 and table[i, k, B] > 0 and table[k, j, C] > 0 }
if (table[i, j, A] < P(A → BC)×table[i, k, B]×table[k,j,C]) then
 table[i, j, A] ← P(A → BC)×table[i,k,B]×table[k,j,C]
 back[i, j, A] ← { k, B, C }
return BUILD_TREE(back[1, LENGTH(words), S]), table[1,LENGTH(words), S]

PCKY Algorithm

29

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar }
 table[j–1, j, A] ← P(A → words[j])
for i ← from j–2 downto 0 do
for k ← i + 1 to j–1 do
for all { A | A → B C ∈ grammar,
 and table[i, k, B] > 0 and table[k, j, C] > 0 }
if (table[i, j, A] < P(A → BC)×table[i, k, B]×table[k,j,C]) then
 table[i, j, A] ← P(A → BC)×table[i,k,B]×table[k,j,C]
 back[i, j, A] ← { k, B, C }
return BUILD_TREE(back[1, LENGTH(words), S]), table[1,LENGTH(words), S]

PCKY Algorithm

29

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar }
 table[j–1, j, A] ← P(A → words[j])
for i ← from j–2 downto 0 do
for k ← i + 1 to j–1 do
for all { A | A → B C ∈ grammar,
 and table[i, k, B] > 0 and table[k, j, C] > 0 }
if (table[i, j, A] < P(A → BC)×table[i, k, B]×table[k,j,C]) then
 table[i, j, A] ← P(A → BC)×table[i,k,B]×table[k,j,C]
 back[i, j, A] ← { k, B, C }
return BUILD_TREE(back[1, LENGTH(words), S]), table[1,LENGTH(words), S]

PCKY Algorithm

29

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar }
 table[j–1, j, A] ← P(A → words[j])
for i ← from j–2 downto 0 do
for k ← i + 1 to j–1 do
for all { A | A → B C ∈ grammar,
 and table[i, k, B] > 0 and table[k, j, C] > 0 }
if (table[i, j, A] < P(A → BC)×table[i, k, B]×table[k,j,C]) then
 table[i, j, A] ← P(A → BC)×table[i,k,B]×table[k,j,C]
 back[i, j, A] ← { k, B, C }
return BUILD_TREE(back[1, LENGTH(words), S]), table[1,LENGTH(words), S]

PCKY Algorithm

29

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar }
 table[j–1, j, A] ← P(A → words[j])
for i ← from j–2 downto 0 do
for k ← i + 1 to j–1 do
for all { A | A → B C ∈ grammar,
 and table[i, k, B] > 0 and table[k, j, C] > 0 }
if (table[i, j, A] < P(A → BC)×table[i, k, B]×table[k,j,C]) then
 table[i, j, A] ← P(A → BC)×table[i,k,B]×table[k,j,C]
 back[i, j, A] ← { k, B, C }
return BUILD_TREE(back[1, LENGTH(words), S]), table[1,LENGTH(words), S]

PCKY Grammar Segment

30

S → NP VP [0.80] Det → the [0.40]
NP → Det N [0.30] Det → a [0.40]
VP → V NP [0.20] V → includes [0.05]

N → meal [0.01]
N → flight [0.02]

Det – 0.4

[0,1]

PCKY Matrix

31

The flight includes a meal
0 1 2 3 4 5

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

Det – 0.4

[0,1]

N – 0.02

[1,2]

PCKY Matrix

32
0 1 2 3 4 5

The flight includes a meal

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

PCKY Matrix

33
0 1 2 3 4 5

The flight includes a meal

Det – 0.4

[0,1]

NP

[0,2]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

PCKY Matrix

33
0 1 2 3 4 5

The flight includes a meal

Det – 0.4

[0,1]

NP

[0,2]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

P = P(NP → Det N)·
 P(Det → the)·
 P(N → flight)

PCKY Matrix

33
0 1 2 3 4 5

The flight includes a meal

Det – 0.4

[0,1]

NP

[0,2]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

P = P(NP → Det N)·
 P(Det → the)·
 P(N → flight)

P = 0.3· 0.4· 0.02 = 0.00024

PCKY Matrix

34
0 1 2 3 4 5

The flight includes a meal

P = P(NP → Det N)·
P(Det → a)·

 P(N → flight)

P = 0.3· 0.4· 0.02 = 0.00024

Det – 0.4

[0,1]

NP – 0.0024

[0,2]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

Det – 0.4

[0,1]

NP – 0.0024

[0,2] [0,3] [0,4]

S – 2.304×10-8

[0,5]

N – 0.02

[1,2] [1,3] [1,4] [1,5]

V – 0.05

[2,3] [2,4]

VP – 1.2×10-5

[2,5]

Det – 0.4

[3,4]

NP – 0.0012

[3,5]

N – 0.01

[4,5]

PCKY Matrix

35
0 1 2 3 4 5

The flight includes a meal

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

Inducing a PCFG

36

Learning Probabilities
● Simplest way:
● Use treebank of parsed sentences

37

Learning Probabilities
● Simplest way:
● Use treebank of parsed sentences

● To compute probability of a rule, count:

37

Learning Probabilities
● Simplest way:
● Use treebank of parsed sentences

● To compute probability of a rule, count:
● Number of times a nonterminal is expanded: Σ𝛾 Count(𝛼→𝛾)

37

Learning Probabilities
● Simplest way:
● Use treebank of parsed sentences

● To compute probability of a rule, count:
● Number of times a nonterminal is expanded: Σ𝛾 Count(𝛼→𝛾)
● Number of times a nonterminal is expanded by a given rule: Count(𝛼→𝛽)

37

Learning Probabilities
● Simplest way:
● Use treebank of parsed sentences

● To compute probability of a rule, count:
● Number of times a nonterminal is expanded: Σ𝛾 Count(𝛼→𝛾)
● Number of times a nonterminal is expanded by a given rule: Count(𝛼→𝛽)

37

P(α → β |α) =
Count(α → β)

∑γ Count(α → γ)
=

Count(α → β)
Count(α)

Learning Probabilities
● Simplest way:
● Use treebank of parsed sentences

● To compute probability of a rule, count:
● Number of times a nonterminal is expanded: Σ𝛾 Count(𝛼→𝛾)
● Number of times a nonterminal is expanded by a given rule: Count(𝛼→𝛽)

● Alternative: Learn probabilities by re-estimating
● (Later)

37

P(α → β |α) =
Count(α → β)

∑γ Count(α → γ)
=

Count(α → β)
Count(α)

Probabilistic Parser Development Paradigm

38

Train Dev Test

Size

Large

(eg. WSJ 2–21,
39,830 sentences)

Small

(e.g. WSJ 22)

Small/Med

(e.g. WSJ, 23,
2,416 sentences)

Usage Estimate rule
probabilities

Tuning/Verification,
Check for Overfit

Held Out,
Final Evaluation

Parser Evaluation

39

Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

40

Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

40

Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

● How can we tell how good a parse is?

40

Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

● How can we tell how good a parse is?
● Maximally strict: identical to ‘gold standard’

40

Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

● How can we tell how good a parse is?
● Maximally strict: identical to ‘gold standard’

● Partial credit:

40

Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

● How can we tell how good a parse is?
● Maximally strict: identical to ‘gold standard’

● Partial credit:
● Constituents in output match those in reference

40

Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

● How can we tell how good a parse is?
● Maximally strict: identical to ‘gold standard’

● Partial credit:
● Constituents in output match those in reference
● Same start point, end point, non-terminal symbol

40

Parseval
● How can we compute parse score from constituents?

● Multiple Measures:

41

Labeled Recall (LR) =
of correct constituents in hypothetical parse

of total constituents in reference parse

Labeled Precision (LP) =
of correct constituents in hypothetical parse

of total consituents in hypothetical parse

Parseval
● F-measure:
● Combines precision and recall

● Let β ∈ ℝ , β > 0 that adjusts P vs. R s.t.

● Fβ -measure is then:

● With F1-measure as

42

β ∝
R
P

Fβ = (1 + β2) ⋅
P ⋅ R

β2 ⋅ P + R

F1 =
2PR

P + R

Evaluation: Example

43

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

0 1 2 3 4

0 1 2 3 4

Evaluation: Example

43

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4) S(0,4)

0 1 2 3 4

0 1 2 3 4

Evaluation: Example

43

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

S(0,4)

NP(0,1)

0 1 2 3 4

0 1 2 3 4

Evaluation: Example

43

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

S(0,4)

NP(0,1)

VP(1,4)

0 1 2 3 4

0 1 2 3 4

Evaluation: Example

43

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

NP(2,3)

S(0,4)

NP(0,1)

VP(1,4)

NP(2,4)

0 1 2 3 4

0 1 2 3 4

Evaluation: Example

43

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

NP(2,3)

PP(3,4)

S(0,4)

NP(0,1)

VP(1,4)

NP(2,4)

PP(3,4)

0 1 2 3 4

0 1 2 3 4

Evaluation: Example

43

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

NP(2,3)

PP(3,4)

S(0,4)

NP(0,1)

VP(1,4)

NP(2,4)

PP(3,4)

0 1 2 3 4

0 1 2 3 4
LP: 4/5
LR: 4/5
F1: 4/5

● Crossing Brackets:
● # of constituents where produced parse has bracketings that overlap for the

siblings:

● ((A B) C) — { (0,2), (2,3) }
and hyp. has
(A (B C)) — { (0,1), (1, 3) }

Parser Evaluation

44

TOP

A B

C

TOP

A

B

C from evalb.c

State-of-the-Art Parsing
● Parsers trained/tested on Wall Street Journal PTB
● LR: 94%+;

● LP: 94%+;

● Crossing brackets: 1%

● Standard implementation of Parseval:
● evalb

45

Evaluation Issues
● Only evaluating constituency

● There are other grammar formalisms:
● LFG (Constraint-based)

● Dependency Structure

● Extrinsic evaluation
● How well does getting the correct parse match the semantics, etc?

46

Earley Parsing

47

Earley vs. CKY
● CKY doesn’t capture full original structure
● Can back-convert binarization, terminal conversion

● Unit non-terminals require change in CKY

48

Earley vs. CKY
● CKY doesn’t capture full original structure
● Can back-convert binarization, terminal conversion

● Unit non-terminals require change in CKY

● Earley algorithm
● Supports parsing efficiently with arbitrary grammars

● Top-down search

● Dynamic programming
● Tabulated partial solutions

● Some bottom-up constraints

48

Earley Algorithm
● Another dynamic programming solution
● Partial parses stored in “chart”

● Compactly encodes ambiguity

● O(N3)

● Chart entries contain:
● Subtree for a single grammar rule

● Progress in completing subtree

● Position of subtree w.r.t. input

49

Earley Algorithm
● First, left-to-right pass fills out a chart with N+1 states
● Chart entries — sit between words in the input string

● Keep track of states of the parse at those positions

● For each word position, chart contains set of states representing all partial
parse trees generated so far
● e.g. chart[0] contains all partial parse trees generated at the beginning of

sentence

50

Chart Entries
● Three types of constituents:
● Predicted constituents

● In-progress constituents

● Completed constituents

51

Parse Progress
● Represented by Dotted Rules
● Position of • indicates type of constituent

● 0 Book 1 that 2 flight 3
● S → • VP [0,0] (predicted)
● NP → Det • Nom [1,2] (in progress)
● VP → V NP • [0,3] (completed)

● [x,y] tells us what portion of the input is spanned so far by rule

● Each state si: <dotted rule>, [<back pointer>, <current position>]

52

0 Book 1 that 2 flight 3
● S → • VP, [0,0]
● First 0 means S constituent begins at the start of input

● Second 0 means the dot is here too

● So, this is a top-down prediction

53

0 Book 1 that 2 flight 3
● S → • VP, [0,0]
● First 0 means S constituent begins at the start of input

● Second 0 means the dot is here too

● So, this is a top-down prediction

● NP → Det • Nom, [1,2]
● the NP begins at position 1

● the dot is at position 2

● so, Det has been successfully parsed

● Nom predicted next

53

● VP → V NP • [0,3]
● Successful VP parse of entire input

0 Book 1 that 2 flight 3 (continued)

54

Book that flight
0 1 2 3

S → • VP

VP → V NP •

NP → Det • Nominal

Successful Parse
● Final answer found by looking at last entry in chart

● If entry resembles S → α • [0,N] then input parsed successfully

● Chart will also contain record of all possible parses of input string,
given the grammar

55

Parsing Procedure for the Earley Algorithm
● Move through each set of states in order, applying one of three

operations:
● predictor: add predictions to the chart

● scanner: read input and add corresponding state to chart

● completer: move dot to right when new constituent found

● Results (new states) added to current or next set of states in chart

● No backtracking and no states removed: keep complete history of
parse

56

Earley Algorithm
function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE((γ⟶ • S, [0,0]), chart[0])
for i ⟵ from 0 to LENGTH(words) do

for each state in chart[i] do
if INCOMPLETE?(state) and

NEXT-CAT(state) is not a part of speech then
PREDICTOR(state)

elseif INCOMPLETE?(state) and
NEXT-CAT(state) is a part of speech then

SCANNER(state)
else

COMPLETER(state)
end

end
return(chart)

57

Earley Algorithm
procedure PREDICTOR((A→α • B β , [i,j]))

for each (B → γ) in GRAMMAR-RULES-FOR(B,grammar) do
ENQUEUE((B→• γ, [j,j]), chart[j])

end

procedure SCANNER((A → α • B β,[i,j]))
if B ⊂ PARTS-OF-SPEECH(word[j]) then

ENQUEUE((B → word[j] •, [j,j+1]), chart[j+1])

procedure COMPLETER((B → γ •, [j,k]))
for each (A → α • B β, [i,j]) in chart[j] do

ENQUEUE((A → α B • β, [i,k]), chart[k])
end

58

3 Main Subroutines of Earley
● Predictor
● Adds predictions into the chart

● Scanner
● Reads the input words and enters states representing those words into the

chart

● Completer
● Moves the dot to the right when new constituents are found

59

Predictor
● Intuition:
● Create new state for top-down prediction of new phrase

● Applied when non part-of-speech non-terminals are to the right of a
dot:
● S → • VP [0,0]

● Adds new states to current chart
● One new state for each expansion of the non-terminal in the grammar

VP → • V [0,0]  
VP → • V NP [0,0]

60

Chart[0]

61

S0 γ → • S [0,0] Dummy start state

S1 S → • NP VP [0.0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor

S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper-Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor

S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor
S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

Chart[1]

62

S12 Verb → book • [0,1] Scanner

S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer

S17 S → VP • [0,1] Completer

S18 VP → VP • PP [0,1] Completer

S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper-Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

Book that flight

63

ᅭ
• S

S0: γ → • S [0,0]

Book that flight

64

ᅭ
S

• VP

S0: γ → • S [0,0]
S3: S → • VP [0,0]

Book that flight

65

ᅭ
S

VP

• Verb NP

S0: γ → • S [0,0]
S3: S → • VP [0,0]
S8: VP → • Verb NP [0,0]

Book that flight

66

ᅭ
S

VP

Verb

• book

NP

S0: γ → • S [0,0]
S3: S → • VP [0,0]
S8: VP → • Verb NP [0,0]
S12: Verb → • book [0,0]

Book that flight

67

ᅭ
S

VP

Verb

book •

NP

S0: γ → • S [0,0]
S3: S → • VP [0,0]
S8: VP → • Verb NP [0,0]
S12: Verb → book • [0,1]

Book that flight

68

ᅭ
S

VP

Verb •

book

NP

S0: γ → • S [0,0]
S3: S → • VP [0,0]
S8: VP → Verb • NP [0,1]

Book that flight

69

ᅭ
S

VP •

Verb

book

NP

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]

Book that flight

70

ᅭ
S

VP

Verb

book

NP

• Det Nominal

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]
S21: NP → • Det Nominal [1,1]

Book that flight

71

ᅭ
S

VP

Verb

book

NP

Det

• that

Nominal

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]
S21: NP → • Det Nominal [1,1]
S23: Det → • “that” [1,1]

Book that flight

72

ᅭ
S

VP

Verb

book

NP

Det

that •

Nominal

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]
S21: NP → • Det Nominal [1,1]
S23: Det → “that” • [1,2]

Book that flight

73

ᅭ
S

VP

Verb

book

NP

Det •

that

Nominal

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]
S21: NP → Det • Nominal [1,2]

Book that flight

74

ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

• Noun

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]
S21: NP → Det • Nominal [1,2]
S25: Nominal → • Noun [2,2]

Book that flight

75

ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

Noun

flight •

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]
S21: NP → Det • Nominal [1,2]
S25: Nominal → • Noun [2,2]
S28: Noun → “flight” • [2,3]

Book that flight

76

ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

Noun •

flight

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]
S21: NP → Det • Nominal [1,2]
S25: Nominal → Noun • [2,3]

Book that flight

77

ᅭ
S

VP

Verb

book

NP

Det

that

Nominal •

Noun

flight

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb • NP [0,1]
S21: NP → Det Nominal • [1,3]

Book that flight

78

ᅭ
S

VP

Verb

book

NP •

Det

that

Nominal

Noun

flight

S0: γ → • S [0,0]
S3: S → VP • [0,1]
S8: VP → Verb NP • [0,3]

Book that flight

79

ᅭ
S

VP •

Verb

book

NP

Det

that

Nominal

Noun

flight

S0: γ → • S [0,0]
S3: S → VP • [0,3]

What About Dead Ends?

80

Book that flight

81

S0: γ → • S [0,0]
S1: S → • NP VP [0,0]

NP → • Pronoun
NP → • Proper-Noun
NP → • Det Nominal

ᅭ
S

• NP

...

VP

book

Book that flight

81

S0: γ → • S [0,0]
S1: S → • NP VP [0,0]

NP → • Pronoun
NP → • Proper-Noun
NP → • Det Nominal

ᅭ
S

• NP

...

VP

book

What About Recursion?

82

What about recursion?

83

What about recursion?
● We now have a top-down parser in hand. Does it enter infinite loops

on rules like S -> S ‘and’ S?

83

What about recursion?
● We now have a top-down parser in hand. Does it enter infinite loops

on rules like S -> S ‘and’ S?

● No!

83

procedure ENQUEUE(state, chart-entry)
if state is not already in chart-entry then

PUSH(state, chart-entry)
end

What about recursion?
● We now have a top-down parser in hand. Does it enter infinite loops

on rules like S -> S ‘and’ S?

● No!

83

procedure ENQUEUE(state, chart-entry)
if state is not already in chart-entry then

PUSH(state, chart-entry)
end

Exercise: parse ‘table and chair’ using the very simple grammar
Nom -> Nom ‘and’ Nom | ‘table’ | ‘chair’

