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Announcements
● HW2 due tonight at 11:59pm 
● readme.{txt|pdf} 
● Separate upload to Canvas 
● NOT in hw2.tar.gz 

● Run check_hw2.sh before submitting! (Also: tar -tf hw2.tar.gz to preview.) 
● Flat structure; just files, no directories, inside tar-ball 
● Include only the files we ask for, not more 

● Start symbol: either “%start S” or first nonterminal 
● NB: needs to be readable by nltk’s grammar loading methods 

● Use nltk.data.load: best to use “file:path/to/grammar.cfg” as argument 
● Docs: https://www.nltk.org/api/nltk.data.html#nltk.data.load  

● See hw2 slides as well on website for above points
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Roadmap
● CKY + back-pointers example 

● PCFGs 

● PCFG Parsing (PCKY) 

● Inducing a PCFG 

● Evaluation 

● [Earley parsing] 

● HW3 + collaboration
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CKY + Back-pointers Example
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cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
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Probabilistic Context-Free Grammars
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Probabilistic Context-free Grammars: 
Roadmap

● Motivation: Ambiguity 

● Approach: 
● Definition 

● Disambiguation 

● Parsing 

● Evaluation 

● Enhancements
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Motivation
● What about ambiguity? 

● Current algorithm can represent it 

● …can’t resolve it.
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Probabilistic Parsing
● Provides strategy for solving disambiguation problem 
● Compute the probability of all analyses 

● Select the most probable 

● Employed in language modeling for speech recognition 
● N-gram grammars predict words, constrain search 

● Also, constrain generation, translation
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PCFGs: Formal Definition
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PCFGs: Formal Definition
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N a set of non-terminal symbols (or variables)

Σ a set of terminal symbols (disjoint from N)

R
a set of rules of productions, each of the form A → 𝜷[p], where A is a non-terminal where 

A is a non-terminal, 𝜷 is a string of symbols from the infinite set of strings (Σ⋃N)∗ and p is 

a number between 0 and 1 expressing P(𝜷|A)

S a designated start symbol



PCFGs
● Augment each production with probability that LHS will be expanded 

as RHS 
● P(A→𝛽)
● P(A→𝛽|A)
● P(𝛽|A)
● P(RHS | LHS)

● NB: the first is often used; but the latter are what’s really meant.
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● Sum over all possible expansions is 1 
 
 
 

● A PCFG is consistent if sum of probabilities of all sentences in language 
is 1 
● Recursive rules often yield inconsistent grammars (Booth & Thompson, 1973)

PCFGs

19

∑
β

P(A → β) = 1

https://dl.acm.org/citation.cfm?id=1310632


Example PCFG: Augmented ℒ1
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Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]

S → Aux NP VP [.15] Noun → book [.10] | flight [.30] | meal [.15] | money [0.5] 
           | flights [0.40] | dinner [.10]S → VP [.05]

NP → Pronoun [.35] Verb → book [.30] | include [.30] | prefer [.40]
NP → Proper-Noun [.30] Pronoun → I [.40] | she [.05] | me [.15] | you [.40]
NP → Det Nominal [.20] Proper-Noun → Houston [.60] | NWA [.40]

NP → Nominal [.15] Aux → does [.60] | can [.40]
Nominal → Noun [.75] Preposition → from [.30] | to [.30] | on [.20] | near [.15]

           | through [.05]Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]

VP → Verb [.35]
VP → Verb NP [.20]

VP → Verb NP PP [.10]
VP → Verb PP [.15]

VP → Verb NP NP [.05]
VP → VP PP [.15]

PP → Preposition NP [1.0]



Example PCFG: Augmented ℒ1
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Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]

S → Aux NP VP [.15] Noun → book [.10] | flight [.30] | meal [.15] | money [0.5] 
           | flights [0.40] | dinner [.10]S → VP [.05]

NP → Pronoun [.35] Verb → book [.30] | include [.30] | prefer [.40]
NP → Proper-Noun [.30] Pronoun → I [.40] | she [.05] | me [.15] | you [.40]
NP → Det Nominal [.20] Proper-Noun → Houston [.60] | NWA [.40]

NP → Nominal [.15] Aux → does [.60] | can [.40]
Nominal → Noun [.75] Preposition → from [.30] | to [.30] | on [.20] | near [.15]

           | through [.05]Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]

VP → Verb [.35]
VP → Verb NP [.20]

VP → Verb NP PP [.10]
VP → Verb PP [.15]

VP → Verb NP NP [.05]
VP → VP PP [.15]

PP → Preposition NP [1.0]



● A PCFG assigns probability to each parse tree T for input S 

● Probability of T: product of all rules used to derive T

Disambiguation

22

P(T, S) =
n

∏
i=1

P(RHSi |LHSi)

P(T, S) = P(T)P(S |T) = P(T)
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S → NP VP [0.8] S → NP VP [0.8]
NP → Pron [0.35] NP → Pron [0.35]
Pron → I [0.4] Pron → I [0.4]

VP → V NP PP [0.1] VP → V NP [0.2]
V → prefer [0.4] V → prefer [0.4]

NP → Det Nom [0.2] NP → Det Nom [0.2]
Det → a [0.3] Det → a [0.3]

Nom → N [0.75] Nom → Nom PP [0.05]
N → flight [0.3] Nom → N [0.75]
PP → P NP [1.0] N → flight [0.3]

P → on [0.2] PP → P NP [1.0]
NP → NNP [0.3] P → on [0.2]

NNP → NWA [0.4] NP → NNP [0.3]
NNP → NWA [0.4]
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S → NP VP [0.8] S → NP VP [0.8]
NP → Pron [0.35] NP → Pron [0.35]
Pron → I [0.4] Pron → I [0.4]

VP → V NP PP [0.1] VP → V NP [0.2]
V → prefer [0.4] V → prefer [0.4]

NP → Det Nom [0.2] NP → Det Nom [0.2]
Det → a [0.3] Det → a [0.3]

Nom → N [0.75] Nom → Nom PP [0.05]
N → flight [0.3] Nom → N [0.75]
PP → P NP [1.0] N → flight [0.3]

P → on [0.2] PP → P NP [1.0]
NP → NNP [0.3] P → on [0.2]

NNP → NWA [0.4] NP → NNP [0.3]
NNP → NWA [0.4]

~1.452 × 10-6 ~1.452 × 10-7



Parsing Problem for PCFGs
● Select T such that (s.t.) 

 
 
 

● String of words S is yield of parse tree  

● Select the tree T̂ that maximizes the probability of the parse

24

̂T(S) = argmax
T s.t. S=yield(T)

P(T)



Application: 
Language Modeling

● n-grams helpful for modeling the probability of a string
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Application: 
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:
● Must use 10+-grams… too sparse

● Approximate using conditioning on limited context: 

● PCFGs are able to give probability of entire string without as bad 
sparsity

● Model probability of syntactically valid sentences
● Not just probability of sequence of words

25

P(wi |wi−1) =
P(wi−1, wi)

P(wi−1)



PCFGs: Parsing

26



Probabilistic CKY (PCKY)
● Like regular CKY 
● Assumes grammar in Chomsky Normal Form (CNF) 
● A → B C
● A → w
● Represent input with indices b/t words: 
●  0 Book 1 that 2 flight 3 through 4 Houston 5

27



Probabilistic CKY (PCKY)
● For input string length n and non-terminals V 
● Cell [ i, j, A ] in ( n+1 ) × ( n+1 ) × V matrix 

● Contains probability that A spans [i, j]

28



PCKY Algorithm

29

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar }
      table[ j–1, j, A ] ← P(A → words[j])
for i ← from j–2 downto 0 do
for k ← i + 1 to j–1 do
for all { A | A → B C ∈ grammar,
       and table[i, k, B] > 0 and table[ k, j, C ] > 0 }
if (table[ i, j, A ] < P(A → BC )×table[ i, k, B ]×table[ k,j,C ]) then
    table[ i, j, A ] ← P(A → BC )×table[i,k,B]×table[k,j,C]
    back[ i, j, A ] ← { k, B, C }
return BUILD_TREE(back[ 1, LENGTH(words), S ]), table[ 1,LENGTH(words), S ]
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PCKY Grammar Segment

30

S → NP VP [0.80] Det → the [0.40]
NP → Det N [0.30] Det → a [0.40]
VP → V NP [0.20] V → includes [0.05]

N → meal [0.01]
N → flight [0.02]



Det – 0.4

[0,1]

PCKY Matrix
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The   flight   includes   a   meal
0 1 2 3 4 5

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]
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N – 0.02

[1,2]

PCKY Matrix
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The   flight   includes   a   meal

S → NP VP [0.80]
NP → Det N [0.30]
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The   flight   includes   a   meal

Det – 0.4

[0,1]

NP

[0,2]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

P = P(NP → Det N)·  
   P(Det → the)· 
  P(N → flight)

P = 0.3· 0.4· 0.02 = 0.00024
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The   flight   includes   a   meal

P = P(NP → Det N)·  
P(Det → a)· 

  P(N → flight)

P = 0.3· 0.4· 0.02 = 0.00024

Det – 0.4

[0,1]

NP – 0.0024

[0,2]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]



Det – 0.4

[0,1]

NP – 0.0024

[0,2] [0,3] [0,4]

S – 2.304×10-8

[0,5]

N – 0.02

[1,2] [1,3] [1,4] [1,5]

V – 0.05

[2,3] [2,4]

VP – 1.2×10-5

[2,5]

Det – 0.4

[3,4]

NP – 0.0012

[3,5]

N – 0.01

[4,5]

PCKY Matrix
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0 1 2 3 4 5

The   flight   includes   a   meal

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]



Inducing a PCFG
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Learning Probabilities
● Simplest way: 
● Use treebank of parsed sentences
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Learning Probabilities
● Simplest way: 
● Use treebank of parsed sentences

● To compute probability of a rule, count: 
● Number of times a nonterminal is expanded:                             Σ𝛾 Count(𝛼→𝛾)
● Number of times a nonterminal is expanded by a given rule:             Count(𝛼→𝛽)

● Alternative: Learn probabilities by re-estimating
● (Later)

37

P(α → β |α) =
Count(α → β)

∑γ Count(α → γ)
=

Count(α → β)
Count(α)



Probabilistic Parser Development Paradigm
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Train Dev Test

Size

Large
 

(eg. WSJ 2–21, 
39,830 sentences)

Small

(e.g. WSJ 22)

Small/Med

(e.g. WSJ, 23,
2,416 sentences)

Usage Estimate rule 
probabilities

Tuning/Verification, 
Check for Overfit

Held Out, 
Final Evaluation



Parser Evaluation
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Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set
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Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

● How can we tell how good a parse is?
● Maximally strict:  identical to ‘gold standard’

● Partial credit:
● Constituents in output match those in reference
● Same start point, end point, non-terminal symbol

40



Parseval
● How can we compute parse score from constituents? 

● Multiple Measures:

41

Labeled Recall (LR) = 
# of correct constituents in hypothetical parse

# of total constituents in reference parse

Labeled Precision (LP) =
# of correct constituents in hypothetical parse

# of total consituents in hypothetical parse



Parseval
● F-measure: 
● Combines precision and recall 

● Let β ∈ ℝ ,  β > 0 that adjusts P vs. R s.t.  

● Fβ -measure is then: 

● With F1-measure as

42

β ∝
R
P

Fβ = (1 + β2) ⋅
P ⋅ R

β2 ⋅ P + R

F1 =
2PR

P + R



Evaluation: Example
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● Crossing Brackets: 
● # of constituents where produced parse has bracketings that overlap for the 

siblings: 

● ((A B) C) — { (0,2), (2,3) } 
and hyp. has  
(A (B C)) — { (0,1), (1, 3) }

Parser Evaluation

44

TOP

A B

C

TOP

A

B

C from evalb.c



State-of-the-Art Parsing
● Parsers trained/tested on Wall Street Journal PTB 
● LR: 94%+;  

● LP: 94%+;  

● Crossing brackets: 1% 

● Standard implementation of Parseval: 
● evalb
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Evaluation Issues
● Only evaluating constituency 

● There are other grammar formalisms: 
● LFG (Constraint-based) 

● Dependency Structure 

● Extrinsic evaluation 
● How well does getting the correct parse match the semantics, etc?

46



Earley Parsing
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Earley vs. CKY
● CKY doesn’t capture full original structure 
● Can back-convert binarization, terminal conversion 

● Unit non-terminals require change in CKY
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Earley vs. CKY
● CKY doesn’t capture full original structure 
● Can back-convert binarization, terminal conversion 

● Unit non-terminals require change in CKY

● Earley algorithm 
● Supports parsing efficiently with arbitrary grammars 

● Top-down search 

● Dynamic programming 
● Tabulated partial solutions 

● Some bottom-up constraints

48



Earley Algorithm
● Another dynamic programming solution 
● Partial parses stored in “chart” 

● Compactly encodes ambiguity 

● O(N3)

● Chart entries contain: 
● Subtree for a single grammar rule 

● Progress in completing subtree 

● Position of subtree w.r.t. input

49



Earley Algorithm
● First, left-to-right pass fills out a chart with N+1 states 
● Chart entries — sit between words in the input string 

● Keep track of states of the parse at those positions 

● For each word position, chart contains set of states representing all partial 
parse trees generated so far 
● e.g. chart[0] contains all partial parse trees generated at the beginning of 

sentence

50



Chart Entries
● Three types of constituents: 
● Predicted constituents 

● In-progress constituents 

● Completed constituents

51



Parse Progress
● Represented by Dotted Rules 
● Position of • indicates type of constituent 

● 0 Book 1 that 2 flight 3 
● S → • VP                [0,0]     (predicted)
● NP → Det • Nom    [1,2]     (in progress)
● VP → V NP •          [0,3]     (completed)

● [x,y] tells us what portion of the input is spanned so far by rule 

● Each state si: <dotted rule>, [<back pointer>, <current position>]

52



0 Book 1 that 2 flight 3
● S → • VP, [0,0]
● First 0 means S constituent begins at the start of input 

● Second 0 means the dot is here too 

● So, this is a top-down prediction
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0 Book 1 that 2 flight 3
● S → • VP, [0,0]
● First 0 means S constituent begins at the start of input 

● Second 0 means the dot is here too 

● So, this is a top-down prediction

● NP → Det • Nom, [1,2]
● the NP begins at position 1 

● the dot is at position 2 

● so, Det has been successfully parsed 

● Nom predicted next

53



● VP → V NP • [0,3]
● Successful VP parse of entire input

0 Book 1 that 2 flight 3 (continued)

54

Book that flight
0 1 2 3

S → •  VP

VP →  V NP •

NP → Det • Nominal



Successful Parse
● Final answer found by looking at last entry in chart 

● If entry resembles S → α • [0,N] then input parsed successfully 

● Chart will also contain record of all possible parses of input string, 
given the grammar
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Parsing Procedure for the Earley Algorithm
● Move through each set of states in order, applying one of three 

operations: 
● predictor: add predictions to the chart 

● scanner: read input and add corresponding state to chart 

● completer: move dot to right when new constituent found 

● Results (new states) added to current or next set of states in chart 

● No backtracking and no states removed: keep complete history of 
parse

56



Earley Algorithm
function EARLEY-PARSE(words, grammar) returns chart 

ENQUEUE((γ⟶ • S, [0,0]), chart[0]) 
for i ⟵ from 0 to LENGTH(words) do 

for each state in chart[i] do 
if INCOMPLETE?(state) and 

NEXT-CAT(state) is not a part of speech then 
PREDICTOR(state) 

elseif INCOMPLETE?(state) and 
NEXT-CAT(state) is a part of speech then 

SCANNER(state) 
else 

COMPLETER(state) 
end 

end 
return(chart)
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Earley Algorithm
procedure PREDICTOR((A→α • B β , [i,j])) 

for each (B → γ) in GRAMMAR-RULES-FOR(B,grammar) do 
ENQUEUE((B→• γ, [j,j]), chart[j]) 

end 

procedure SCANNER((A → α • B β,[i,j])) 
if B ⊂ PARTS-OF-SPEECH(word[j]) then 

ENQUEUE((B → word[j] •, [j,j+1]), chart[j+1] ) 

procedure COMPLETER((B → γ •, [j,k])) 
for each (A → α • B β, [i,j]) in chart[j] do 

ENQUEUE((A → α B •  β, [i,k]), chart[k]) 
end

58



3 Main Subroutines of Earley
● Predictor 
● Adds predictions into the chart 

● Scanner 
● Reads the input words and enters states representing those words into the 

chart  

● Completer 
● Moves the dot to the right when new constituents are found

59



Predictor
● Intuition: 
● Create new state for top-down prediction of new phrase 

● Applied when non part-of-speech non-terminals are to the right of a 
dot: 
● S → • VP [0,0]

● Adds new states to current chart 
● One new state for each expansion of the non-terminal in the grammar 

VP → • V          [0,0]       
VP → • V NP    [0,0]       

60



Chart[0]

61

S0 γ → • S [0,0] Dummy start state

S1 S → • NP VP [0.0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor

S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper-Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor

S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor
S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor



Chart[1]
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S12 Verb → book • [0,1] Scanner

S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer

S17 S → VP • [0,1] Completer

S18 VP → VP • PP [0,1] Completer

S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper-Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor



Book that flight
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ᅭ
• S

S0:  γ → • S [0,0]



Book that flight
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ᅭ
S

• VP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0]



Book that flight

65

ᅭ
S

VP

• Verb NP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0]



Book that flight

66

ᅭ
S

VP

Verb

• book

NP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0] 
S12: Verb → • book [0,0]



Book that flight
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ᅭ
S

VP

Verb

book •

NP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0] 
S12: Verb → book • [0,1]



Book that flight
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ᅭ
S

VP

Verb •

book

NP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → Verb • NP [0,1]



Book that flight
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ᅭ
S

VP •

Verb

book

NP

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1]



Book that flight
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ᅭ
S

VP

Verb

book

NP

• Det Nominal

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → • Det Nominal [1,1]



Book that flight

71

ᅭ
S

VP

Verb

book

NP

Det

• that

Nominal

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → • Det Nominal [1,1]  
S23: Det → • “that” [1,1]



Book that flight
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ᅭ
S

VP

Verb

book

NP

Det

that •

Nominal

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → • Det Nominal [1,1]  
S23: Det → “that” • [1,2]



Book that flight
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ᅭ
S

VP

Verb

book

NP

Det •

that

Nominal

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det • Nominal [1,2] 



Book that flight
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ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

• Noun

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det • Nominal [1,2]  
S25: Nominal → • Noun [2,2]



Book that flight
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ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

Noun

flight •

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det • Nominal [1,2]  
S25: Nominal → • Noun [2,2] 
S28: Noun → “flight” • [2,3]



Book that flight
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ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

Noun •

flight

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det • Nominal [1,2]  
S25: Nominal → Noun • [2,3]



Book that flight
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ᅭ
S

VP

Verb

book

NP

Det

that

Nominal •

Noun

flight

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det Nominal • [1,3] 



Book that flight

78

ᅭ
S

VP

Verb

book

NP •

Det

that

Nominal

Noun

flight

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb NP • [0,3]



Book that flight

79

ᅭ
S

VP •

Verb

book

NP

Det

that

Nominal

Noun

flight

S0:  γ → • S [0,0] 
S3:  S → VP • [0,3]



What About Dead Ends? 
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Book that flight
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S0:  γ → • S [0,0] 
S1: S → • NP VP [0,0] 

NP → • Pronoun 
NP → • Proper-Noun 
NP → • Det Nominal

ᅭ
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• NP
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S0:  γ → • S [0,0] 
S1: S → • NP VP [0,0] 

NP → • Pronoun 
NP → • Proper-Noun 
NP → • Det Nominal

ᅭ
S

• NP

...

VP

book



What About Recursion? 
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PUSH(state, chart-entry) 
end



What about recursion?
● We now have a top-down parser in hand.  Does it enter infinite loops 

on rules like S -> S ‘and’ S?

● No! 

83

procedure ENQUEUE(state, chart-entry) 
if state is not already in chart-entry then 

PUSH(state, chart-entry) 
end

Exercise: parse ‘table and chair’ using the very simple grammar 
Nom -> Nom ‘and’ Nom | ‘table’ | ‘chair’


