Word Sense Disambiguation

LING 571 — Deep Processing for NLP Shane Steinert-Threlkeld

1

Announcements

Announcements

- HW7:
 - Punctuation: leave only alphanumeric characters (as tokens, and within tokens)
 - "\w": match a single alphanumeric
 - "\W": match a single non-alphanumeric
 - Sliding window: can ignore sentence boundaries

Today's Plan

- Prediction-based methods for word vector induction
- Distributional approaches to WSD
- Resource-based approaches to WSD

Distributional Similarity for Word Sense Induction + Disambiguation

- We've looked at how to represent words
 - ...so far, ignored **homographs**
- Wrong senses can lead to poor performance in downstream tasks
 - Machine translation, text classification
- Now, how do we go about differentiating homographs?

Word Sense Disambiguation

Word Senses

WordNet Sense	Spanish Translation	Roget Category	
bass ⁴	lubina	Fish/Insect	
bass ⁴	lubina	Fish/Insect	
bass ⁷	bajo	Music	
bass ⁷	bajo	Music	

Word in Context

... fish as Pacific salmon and striped **bass** and...

... produce filets of smoked **bass** or sturgeon...

...exciting jazz **bass** player since Ray Brown...

...play **bass** because he doesn't have to solo...

WSD With Distributional Similarity

• We've covered how to create vectors for *words*, but how do we represent senses?

WSD With Distributional Similarity

- We've covered how to create vectors for *words*, but how do we represent senses?
- *First order* vectors:
 - $\vec{W} = (f_1, f_2, f_3 ...)$
 - Feature vector of word itself

WSD With Distributional Similarity

- We've covered how to create vectors for *words*, but how do we represent senses?
- *First order* vectors:
 - $\vec{W} = (f_1, f_2, f_3 ...)$
 - Feature vector of word itself
- Second order vectors:
 - Context vector

There are more kinds of plants and animals in the rainforests than anywhere else on Earth. Over half of the millions of known species of plants and animals live in the rainforest. Many are found nowhere else. There are even plants and animals in the rainforest that we have not yet discovered. **Biological Example**

The Paulus company was founded in 1938. Since those days the product range has been the subject of constant expansions and is brought up continuously to correspond with the state of the art. We're engineering, manufacturing and commissioning worldwide ready-to-run plants packed with our comprehensive know-how. Our Product Range includes pneumatic conveying systems for carbon, carbide, sand, lime and many others. We use reagent injection in molten metal for the... Industrial Example

Label the First Use of "Plant"

- 2nd Order Representation:
- Identify words in context of w
- For each *x* in context of *w*:
 - Compute *x* vector representation
- Compute centroid of these \vec{x} vector representations

Word Representation

- Compute context vector for each occurrence of word in corpus
- Cluster these context vectors
 - # of clusters = # of senses
- Cluster centroid represents word sense
- Link to specific sense?
 - Pure unsupervised: no sense tag, just ith sense
 - Some supervision: hand label clusters, or tag training

Disambiguating Instances

- To disambiguate an instance *t* of *w*.
 - Compute context vector for instance
 - Retrieve all senses of **w**
 - Assign **w** sense with closest centroid to **t**

1

the lean flesh of a saltwater fish of the family Serranidae

bass⁷

the member with the lowest range of a family of musical instruments

with the lowest voice

...and the **bass** covered the low notes

...and the **bass** covered the **low notes**

...and the **bass** covered the **low notes**

...and the **bass³** covered the low notes

Contextual Embeddings for Disambiguation

The nearest-neighbor algorithm for WSD. In green are the contextual embed-Figure 19.9 dings precomputed for each sense of each word; here we just show a few of the senses for find. A contextual embedding is computed for the target word found, and the and then the nearest neighbor sense (in this case find⁹_n) would be chosen. Figure inspired by Loureiro and Jorge (2019).

Resource-Based Models

Resource-Based Models

- Alternative to just clustering distributional representations
- What if we actually have some resources?
 - Dictionaries
 - Semantic sense taxonomy
 - Thesauri

- (Simplified) Lesk algorithm
 - "How to tell a pine cone from an ice cream cone" (Lesk, 1986)
- Compute "signature" of word senses:
 - Words in gloss and examples in dictionary

bank (n.)		a financial institution that activities. "he cashed a ch
	2	sloping land (especially t "they pulled the canoe up currents."

t accepts deposits and channels the money into lending neck at the bank,""that bank holds the mortgage on my home."

he slope beside a body of water). on the bank,"""he sat on the bank of the river and watched the

- Compute context of word to disambiguate
- Compare overlap between signature and context
- Select sense with highest (non-stopword) overlap

bank (n.)	I	a financial institution that activities. "he cashed a ch
	2	sloping land (especially t "they pulled the canoe up currents."

t accepts deposits and channels the money into lending neck at the bank,""that bank holds the mortgage on my home."

he slope beside a body of water). on the bank,"""he sat on the bank of the river and watched the

- Compute context of word to disambiguate
- Compare overlap between signature and context
- Select sense with highest (non-stopword) overlap

bank (n.)	I	a financial institution that activities. "he cashed a ch
	2	sloping land (especially th "they pulled the canoe up currents."

- "She went to the **bank** to withdraw some money."
 - t accepts deposits and channels the money into lending neck at the bank,""that bank holds the mortgage on my home."
 - he slope beside a body of water). on the bank,"""he sat on the bank of the river and watched the

- Compute context of word to disambiguate
- Compare overlap between signature and context
- Select sense with highest (non-stopword) overlap

bank (n.)	I	a financial institution that activities. "he cashed a ch
	2	sloping land (especially th "they pulled the canoe up currents."

- "She went to the **bank** to withdraw some money."
 - t accepts deposits and channels the money into lending neck at the bank,""that bank holds the mortgage on my home."
 - he slope beside a body of water). on the bank,"""he sat on the bank of the river and watched the

- Compute context of word to disambiguate
- Compare overlap between signature and context
- Select sense with highest (non-stopword) overlap

bank (n.)	I	a financial institution that activities. "he cashed a ch
	2	sloping land (especially th "they pulled the canoe up currents."

- "The frog sat on the river **bank**, half in and half out of the water."
 - t accepts deposits and channels the money into lending eck at the bank,""that bank holds the mortgage on my home."
 - he slope beside a body of water). on the bank,"""he sat on the bank of the river and watched the

- Compute context of word to disambiguate
- Compare overlap between signature and context
- Select sense with highest (non-stopword) overlap

bank (n.)	I	a financial institution that activities. "he cashed a ch
	2	sloping land (especially tl "they pulled the canoe up currents."

- "The frog sat on the river **bank**, half in and half out of the water."
 - t accepts deposits and channels the money into lending eck at the bank,""that bank holds the mortgage on my home."
 - he slope beside a body of water). on the bank,"""he sat on the bank of the river and watched the

Sense Taxonomy/Thesaurus Approaches

• Widely-used English sense resource

- Widely-used English sense resource
- Manually constructed lexical database

- Widely-used English sense resource
- Manually constructed lexical database
 - 3 tree-structured hierarchies
 - Nouns (117K)
 - Verbs (11K)
 - Adjective+Adverb (27K)

- Widely-used English sense resource
- Manually constructed lexical database
 - 3 tree-structured hierarchies
 - Nouns (117K)
 - Verbs (11K)
 - Adjective+Adverb (27K)
 - Entries:
 - Synonym set ("synset")
 - Gloss
 - Example usage

- Relations between entries:
 - Synonymy: in synset
 - Hyponym/Hypernym: *is-a* tree

WordNet

The **noun** "bass" has **8** senses in WordNet. [link]

- 1. **bass**¹ (the lowest part of the musical range)
- 2. **bass**², **bass part**¹ (the lowest part in polyphonic music)
- 3. **bass**³, **basso**¹ (an adult male singer with the lowest voice)
- 4. **sea bass**¹, **bass**⁴ (the lean fish of a saltwater fish of the family *Serranidae*)
- 5. **freshwater bass**¹, **bass**⁵ (any of various North American freshwater fish with lean flesh (especially of the genus *Micropterus*))
- 6. **bass**⁶, **bass voice**¹, **basso**² (the lowest adult male singing voice)
- 7. **bass**⁷ (the member with the lowest range of a family of musical instruments)
- 8. **bass**⁸ (nontechnical name for any numerous edible marine and freshwater spiny-finned fishes)

The **adjective** "bass" has **1** sense in WordNet.

1. **bass**¹ - deep6 - (having or denoting a low vocal or instrumental range) "a deep voice";" a bass voice is lower than a baritone voice";" a bass clarinet"

Noun WordNet Relations

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	breakfast ¹ → meal ¹
Hyponym	Subordinate	From concepts to subtypes	meal ¹ → lunch ¹
Instance Hypernym	Instance	From instances to their concepts	Austen ^I \rightarrow author ^I
Instance Hyponym	Has-Instance	From concepts to concept instances	composer ^I → Bach ^I
Member Meronym	Has-Member	From groups to their members	faculty ² → professor ¹
Member Holonym	Has-Part	From members to their groups	copilot ^ı → crew ^ı
Part Meronym	Part-Of	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym		From parts to wholes	course ⁷ → meal ¹
Substance Meronym		From substances to their subparts	water \rightarrow oxygen
Substance Holonym		From parts of substances to wholes	gin ^I → martini ^I
Antonym		Semantic opposition between lemmas	leader' ⇔ follower'
Derivationally Related Form		Lemmas	$destruction^{I} \iff destroy^{I}$

WordNet Taxonomy

```
Sense 3
bass, basso --
(an adult male singer with the lowest voice)
  =>singer, vocalist, vocalizer, vocaliser
    => musician, instrumentalist, player
       => performer, performing artist
         => entertainer
            => person, individual, someone...
              => organism, being
                 => living thing, animate thing
                   => whole, unit
                      => object, physical object
                        => physical entity
                           => entity
              => causal agent, cause, causal agency
                 => physical entity
                   => entity
```


- Key idea:
 - measure

• The number of "hops" between words in a thesaurus can be a distance

- Key idea:
 - measure
 - The shorter path length in thesaurus, smaller semantic distance

• The number of "hops" between words in a thesaurus can be a distance

- Key idea:
 - The number of "hops" between words in a thesaurus can be a distance measure
 - The shorter path length in thesaurus, smaller semantic distance
 - Words similar to parents, siblings in tree

- Key idea:
 - The number of "hops" between words in a thesaurus can be a distance measure
 - The shorter path length in thesaurus, smaller semantic distance
 - Words similar to parents, siblings in tree
- pathlength = #edges in shortest route through graph between nodes • $sim_{path} = -\log pathlen(c_1, c_2)$ [Leacock & Chodorow, 1998]

• Rarely know which sense, thus rarely know which node

- Rarely know which sense, thus rarely know which node
- Solution
 - assume most similar senses as an estimate
 - $wordsim(w_1, w_2) = \max sim(c_1, c_2)$

• Links in WordNet not uniformly different

• Links in WordNet not uniformly different • $|Nickel \rightarrow Money| = 5$

Problem #2 standard medium of exchange scale currency Richter scale money coinage fund budget coin nickel dime

- Links in WordNet not uniformly different
 - $|Nickel \rightarrow Money| = 5$
 - |Nickel \rightarrow Standard | = 5

Problem #2 standard medium of exchange scale currency Richter scale money coinage fund budget coin dime nickel

- Links in WordNet not uniformly different
 - $|Nickel \rightarrow Money| = 5$
 - |Nickel \rightarrow Standard | = 5
- How to capture?

Thesaurus-based Techniques: A Solution

- Add information content from a corpus (Resnik, 1995)
- **P(c)**: probability that a word is instance of concept **c**
- *words(c)*: words subsumed by concept *c*;
- N: words in corpus

Information Content

• Using a sense-tagged corpus (like <u>SemCor</u>)

```
<wf cmd="ignore" pos="IN">in</wf>
<wf cmd="ignore" pos="DT">the</wf>
<wf cmd="done" pos="NN" lemma="united states of america" wnsn="1" lexsn="1:15:00::">United States of America</wf>
<wf cmd="done" pos="VB" lemma="be" wnsn="1" lexsn="2:42:03::">was</wf>
<wf cmd="done" pos="JJ" lemma="gay" wnsn="6" lexsn="5:00:00:homosexual:00">gay</wf>
<punc>,</punc>
<wf cmd="done" pos="JJ" lemma="witty" wnsn="1" lexsn="5:00:00:humorous:00">witty</wf>
<punc>,</punc>
<wf cmd="done" pos="JJ" lemma="mercurial" wnsn="1" lexsn="5:00:00:changeable:00">mercurial</wf>
<punc>,</punc>
<wf cmd="done" pos="JJ" lemma="full" wnsn="1" lexsn="3:00:00::">full</wf>
<wf cmd="done" pos="JJ" ot="notag">of</wf>
<wf cmd="done" pos="NN" lemma="prank" wnsn="1" lexsn="1:04:01::">pranks</wf>
<wf cmd="ignore" pos="CC">and</wf>
<wf cmd="done" pos="NN" ot="foreignword">bonheur</wf>
```

""The Serge Prokofieff whom we knew in the United States of America was gay, witty, mercurial, full of pranks and bonheur—

Concept Probability Example

natural-elevation 0.000113

> hill 0.0000189

```
entity
          0.395
            \uparrow
  inanimate-object
          0.167
            \uparrow
    natural-object
          0.0163
            个
geological-formation
         0.00176
                 K
       Z
                   shore
                  0.0000836
  \uparrow \qquad \qquad \uparrow
                   coast
                  0.0000216
```


Information Content-Based Similarity Measures

- Information content of node (concept *c*)
 - $IC(c) = -\log P(c)$
 - As probability of encountering *c* increases, informativeness decreases

Information Content-Based Similarity Measures

- Information content of node (concept c)
 - $IC(c) = -\log P(c)$
 - As probability of encountering *c* increases, informativeness decreases
- Least common subsumer (LCS):
 - Lowest node in hierarchy subsuming 2 nodes

Information Content-Based Similarity Measures

- Information content of node (concept c)
 - $IC(c) = -\log P(c)$
 - As probability of encountering *c* increases, informativeness decreases
- Least common subsumer (LCS):
 - Lowest node in hierarchy subsuming 2 nodes
- Similarity measure
 - $sim_{resnik}(c_1, c_2) = -\log P(LCS(c_1, c_2))$
 - The more specific the LCS concept, the more similar C_1 , C_2 .

- LCS(nickel, dime) = coin
- LCS(nickel, budget) = medium of exchange

- LCS(*nickel*, *dime*) = *coin*
- LCS(nickel, budget) = medium of exchange

- LCS(*nickel*, *dime*) = *coin*
- LCS(nickel, budget) = medium of exchange

- LCS(*nickel*, *dime*) = *coin*
- LCS(nickel, budget) = medium of exchange

- LCS(nickel, dime) = coin
- LCS(*nickel*, *budget*) = *medium* of *exchange*

- LCS(nickel, dime) = coin
- LCS(*nickel*, *budget*) = *medium* of *exchange*

- LCS(nickel, dime) = coin
- LCS(*nickel*, *budget*) = *medium of exchange*

The Plant Example Again

- not yet discovered.
- The Paulus company was founded in 1938. Since those days the run plants packed with our comprehensive know-how.

• There are more kinds of **plants** and animals in the rainforests than anywhere else on Earth. Over half of the millions of known species of **plants** and animals live in the rainforest. Many are found nowhere else. There are even plants and animals in the rainforest that we have

product range has been the subject of constant expansions and is brought up continuously to correspond with the state of the art. We're engineering, manufacturing, and commissioning world-wide ready-to-

• Calculate Informativeness

- For each node in WordNet:
 - Sum occurrences of concept and all children
 - Compute *Information Content* for each node of WordNet

Application to WSD

Disambiguate with WordNet

- Assume set of words in context: {*animals, rainforest, species*}
- Find Most Informative Least Common Subsumer
 - for target word, context word
- Increment count for sense subsumed by this concept
- Select sense with highest vote

Application to WSD

Thesaurus Similarity Issues

- Coverage:
 - Few languages have large thesauri
 - Few languages have large sense-tagged corpora
- Thesaurus design:
 - Works well for noun *IS-A* hierarchy
 - Verb hierarchy shallow, bushy, less informative

Resnik Similarity


```
Given W = \{w_i, \dots, w_n\}, a set of nouns
        for i and j=1 to n, with i < j
           \mathbf{v}_{i,j} = wsim(w_i, w_j)
            c<sub>i,j</sub>=the most informative subsumer for w<sub>i</sub> and w<sub>j</sub>
            for k=1 to num_senses(w<sub>i</sub>)
               if c_{i,j} is an ancestor of sense<sub>i,k</sub>
                   increment support[i,k] by v<sub>i,j</sub>
            for k'=1 to num_senses(w<sub>j</sub>)
               if c_{i,j} is an ancestor of sense<sub>j,k'</sub>
                   increment_support[j,k'] by v<sub>i,j</sub>
            increment normalization[i] by v<sub>i,j</sub>
            increment normalization[j] by v<sub>i,j</sub>
        for i=1 to n
            for k=1 to num_senses(w_i)
               if (normalization[i] > 0.0)
                  \gamma_{i,k}=support[i,k]/normalization[i]
               else
                  \gamma_{i,k}=1/\text{num senses}[w_i]
```

Algorithm

Resnik 1999, sec 5.1 [also on website]

Given $W = \{w_i, \dots, w_n\}$, a set of nouns

```
for i=1 to n, and input word wo
   \mathbf{v}_{0,i} = wsim(w_0, w_i)
   c_{0,i}=the most informative subsumer for w_0 and w_i
   for k=1 to num_senses(wi)
     if c_{0,i} is an ancestor of sense<sub>i,k</sub>
         increment support[i,k] by vo,i
   for k'=1 to num_senses(w_0)
     if c_{0,i} is an ancestor of sense_{k'}
         increment_support[0,k'] by v<sub>0,i</sub>
   increment normalization[i] by v<sub>0,i</sub>
for i=1 to n
   for k=1 to num_senses(w_i)
     if (normalization[i] > 0.0)
        \u03c3<sub>i,k</sub>=support[i,k]/normalization[i]
     else
        \gamma_{i,k}=1/num_senses[w_i]
```

Algorithm

 $sim_{word}(w_1, w_2) = \max_{c_1, c_2} \left(sim_{concept}(c_1, c_2) \right)$

• Let's try

• *sim_{word}(doctor, nurse*)

p=0.208 info=5.584

p=0.0079 info=6.993

p=0.0022 info=8.844 <u>Via Resnik (1999)</u> — p. 96

44

 $sim_{word}(w_1, w_2) = \max_{c_1, c_2} (sim_{concept}(c_1, c_2))$

 $sim_{word}(w_1, w_2) = \max_{c_1, c_2} \left(sim_{concept}(c_1, c_2) \right)$

- Let's try
 - *sim_{word}*(*doctor*, *nurse*)
- $sim_{concept}(C_1, C_2)$
 - Get IC of LCS

p=0.0079 info=6.993

CI	C2	LCS	sim(c ₁ ,c ₂)	ш
DOCTORI	NURSE ₂	Person	2.005	П Р=0

 $sim_{word}(w_1, w_2) = \max_{c_1, c_2} \left(sim_{concept}(c_1, c_2) \right)$

- sim_{word}(doctor, nurse)
- $sim_{concept}(C_1, C_2)$
 - Get IC of LCS

p=0.0079 info=6.993

CI	C ₂	LCS	sim(c ₁ ,c ₂)	L.
DOCTORI	NURSE ₂	Person	2.005	P=0.0
DOCTOR ₂	NURSE ₂	Person	2.005	info=

 $sim_{word}(w_1, w_2) = \max_{c_1, c_2} \left(sim_{concept}(c_1, c_2) \right)$

- sim_{word}(doctor, nurse)
- $sim_{concept}(C_1, C_2)$
 - Get IC of LCS

p=0.208 info=5.584

p=0.0079 info=6.993

CI	C 2	LCS	sim(c ₁ ,c ₂)	
DOCTORI	NURSE ₂	Person	2.005	P=
DOCTOR ₂	NURSE ₂	Person	2.005	info
DOCTOR ₂	NURSEI	Person	2.005	

• Calculate:

 $sim_{word}(w_1, w_2) = \max_{c_1, c_2} \left(sim_{concept}(c_1, c_2) \right)$

- *sim_{word}*(*doctor*, *nurse*)
- $sim_{concept}(C_1, C_2)$
 - Get IC of LCS

p=0.208 info=5.584

p=0.0079 info=6.993

CI	C2	LCS	sim(c ₁ ,c ₂)	1.1-
DOCTORI	NURSE ₂	Person	2.005	P=0.0
DOCTOR ₂	NURSE ₂	Person	2.005	info=8
DOCTOR ₂	NURSEI	Person	2.005	
DOCTOR	NURSE	Health_Professional	8.844	Do

<u>Via Resnik (1999)</u> — p. 96

Resnik WSD: Choosing a Sense

- doctor nurse, lawyer, accountant, scholar, minister
- We'll get:
 - $\{ DOCTOR_I, NURSE_1 \} \subset HEALTH PROFESSIONAL \}$
 - {**DOCTOR**, LAWYER₁} \subset **PROFESSIONAL**
 - {**DOCTOR**, ACCOUNTANT₁} \subset PROFESSIONAL
 - {**DOCTOR**₂, SCHOLAR₁} \subset INTELLECTUAL
 - {**DOCTOR**₂, MINISTER₁} \subset INTELLECTUAL
- DOCTOR_I with 22.83 of "support"
- DOCTOR₂ with 12.942 of "support"
 - Select **Doctor**, by majority vote.

<u>Via Resnik (1999)</u> — p. 96

= 8.844 + 6.993 = 15.837+ 6.993 = **22.83** = 6.471+ 6.471 = 12.942

Compositional and Lexical Semantics

The Meaning of "Life"

In the spring of 1976, Terry Parsons and Barbara Partee taught a course on Montague grammar, which i attended. On the second to the final day of class, Terry went around the room asking the students if there were any questions at all that remained unanswered, and promised to answer them on the last day of class. I asked if he really meant ANY question at all, which he emphatically said that he meant. As I had encountered a few questions in my lifetime that remained at least partially unresolved, I decided to ask one of them. What is life? What is the meaning of life? After all, Barbara and Terry had promised to provide answers to any question at all.

On the final day of class Barbara wore her Montague grammar T-shirt, and she and Terry busied themselves answering our questions. At long last, they came to my question. I anticipated a protracted and involved answer, but their reply was crisp and succinct. First Barbara, chalk in hand, showed me the meaning of life.

^<u>life</u>'

Terry then stepped up and showed me what life really is.

`^<u>}ife</u>'

As we were asked to show on a homework assignment earlier in the year, this is equivalent to: <u>life</u>'.

Leaving me astounded that I had been living in such darkness for all these years, the class then turned to the much stickier problem of pronouns.

Foreword

Carlson 1977

The Meaning of "Life"

In the spring of 1976, Terry Parsons and Barbara Partee taught a course on Montague grammar, which i attended. On the second to the final day of class, Terry went around the room asking the students if there were any questions at all that remained unanswered, and promised to answer them on the last day of class. I asked if he really meant ANY question at all, which he emphatically said that he meant. As I had encountered a few questions in my lifetime that remained at least partially unresolved, I decided to ask one of them. What is life? What is the meaning of life? After all, Barbara and Terry had promised to provide answers to any question at all.

On the final day of class Barbara wore her Montague grammar T-shirt, and she and Terry busied themselves answering our questions. At long last, they came to my question. I anticipated a protracted and involved answer, but their reply was crisp and succinct. First Barbara, chalk in hand, showed me the meaning of life.

> ^<u>life</u>' $\w.\x.life(w,x)$

Terry then stepped up and showed me what life really is.

`^<u>}ife</u>'

As we were asked to show on a homework assignment earlier in the year, this is equivalent to: life'.

Leaving me astounded that I had been living in such darkness for all these years, the class then turned to the much stickier problem of pronouns.

Foreword

<u>Carlson 1977</u>

Two "Approaches" to Meaning

- Compositional / logical semantics:
- Lexical semantics:
 - booked: [0.1234, 0.4, 0.269, ...]
- area of current work in computational semantics.

• Verb \rightarrow 'booked' { $\lambda W.\lambda z.W(\exists eBooked(e) \land Booker(e,z) \land BookedThing(e,y))$ }

• Generating good sentence representations, either by integrating these two approaches or enriching the distributional approach, is a major

