Introduction

LING 571 — Deep Processing Techniques for NLP September 29, 2021 Shane Steinert-Threlkeld

Roadmap

- Motivation
- Language and Intelligence
- Knowledge of Language
- Course Overview
- Intro to Syntax and Parsing

W How are you feeling about the quarter and the return to inperson/hybrid teaching generally?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

Motivation: Applications

- Applications of Speech and Language Processing
 - Call Routing
 - Information Retrieval
 - Question Answering
 - Machine Translation
 - Dialog Systems
 - Spell– and Grammar– Checking
 - Sentiment Analysis
 - Information Extraction

Building on Many Fields

- Linguistics: Morphology, phonology, syntax, semantics...
- **Psychology**: Reasoning, mental representations
- Formal Logic
- Philosophy (of Language)
- Theory of Computation: Automata theory
- Machine Learning, Pattern Matching
- Probability

• Artificial Intelligence: Search, Reasoning, Knowledge Representation,

- Motivation
- Language and Intelligence
- Knowledge of Language
- Course Overview
- Intro to Syntax and Parsing

Roadmap

Operationalizing Intelligence: The Turing Test (1950)

- Two contestants: Human vs. Computer
 - Judge: human
 - Test: interact via text questions
 - Question: Can judge tell which contestant is human?

Operationalizing Intelligence: The Turing Test (1950)

- Two contestants: Human vs. Computer
 - Judge: human
 - Test: interact via text questions
 - Question: Can judge tell which contestant is human?
- Crucially:
 - Posits that passing requires language use and understanding

• ELIZA (Weizenbaum, 1966) [Try it Online]

- ELIZA (Weizenbaum, 1966) [Try it Online]
 - Simulates Rogerian therapist: User: You are like my father in some ways ELIZA: WHAT RESEMBLANCE DO YOU SEE USER: You are not very aggressive ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

- ELIZA (Weizenbaum, 1966) [Try it Online]
 - Simulates Rogerian therapist: User: You are like my father in some ways ELIZA: WHAT RESEMBLANCE DO YOU SEE USER: You are not very aggressive ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
 - Passes the Test! (Sort of)

- ELIZA (Weizenbaum, 1966) [Try it Online]
 - Simulates Rogerian therapist: User: You are like my father in some ways ELIZA: WHAT RESEMBLANCE DO YOU SEE USER: You are not very aggressive ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
 - Passes the Test! (Sort of)
 - Simple pattern matching technique

W UNIVERSITY of WASHINGTON

• **Problem**: "Bots":

- **Problem**: "Bots":
 - Automated agents overrun services

W UNIVERSITY of WASHINGTON

- **Problem**: "Bots":
 - Automated agents overrun services
 - Challenge: Prove you're human

W UNIVERSITY of WASHINGTON

- **Problem**: "Bots":
 - Automated agents overrun services
 - Challenge: Prove you're human
- **Test**: Something a human can do, but a bot can't.

- **Problem**: "Bots":
 - Automated agents overrun services
 - Challenge: Prove you're human
- **Test**: Something a human can do, but a bot can't.
- Solution: CAPTCHAs

- **Problem**: "Bots":
 - Automated agents overrun services
 - Challenge: Prove you're human
- **Test**: Something a human can do, but a bot can't.
- Solution: CAPTCHAs
 - (Von Ahn et al., 2003)

• Completely Automated Public Turing test to tell Computers and Humans Apart

- **Problem**: "Bots":
 - Automated agents overrun services
 - Challenge: Prove you're human
- **Test**: Something a human can do, but a bot can't.
- Solution: CAPTCHAs
 - <u>(Von Ahn et al., 2003)</u>
 - Initially: Distorted images, driven by perception

• Completely Automated Public Turing test to tell Computers and Humans Apart

- **Problem**: "Bots":
 - Automated agents overrun services
 - Challenge: Prove you're human
- **Test**: Something a human can do, but a bot can't.
- Solution: CAPTCHAs
 - <u>(Von Ahn et al., 2003)</u>
 - Initially: Distorted images, driven by perception
 - Long-term: Inspires "arms race"

• Completely Automated Public Turing test to tell Computers and Humans Apart

CAPTCHA arms race

CAPTCHA arms race

• Current Incarnation

• Current Incarnation

C A O

- Current Incarnation
 - Still perception-based

C A O

- Current Incarnation
 - Still perception-based
 - But also relies on world knowledge

CAO

- Current Incarnation
 - Still perception-based
 - But also relies on world knowledge
 - "What is a bus?"

CAO

- Current Incarnation
 - Still perception-based
 - But also relies on world knowledge
 - "What is a bus?"
 - Assumes that the user has extrinsic, shared world knowledge

CAO

- Current Incarnation
 - Still perception-based
 - But also relies on world knowledge
 - "What is a bus?"
 - Assumes that the user has extrinsic, shared world knowledge

Roadmap

- Motivation
- Language and Intelligence
- Knowledge of Language
- Course Overview
- Intro to Syntax and Parsing

• NLP vs. Data Processing

- NLP vs. Data Processing
- POSIX command "wc"

- NLP vs. Data Processing
- POSIX command "wc"
 - Counts total number of bytes, words, and lines in text file

- NLP vs. Data Processing
- POSIX command "wc"
 - Counts total number of bytes, words, and lines in text file
 - bytes and lines \rightarrow data processing

- NLP vs. Data Processing
- POSIX command "wc"
 - Counts total number of bytes, words, and lines in text file
 - bytes and lines \rightarrow data processing
 - words \rightarrow what do we mean by "word"?

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL. HAL: I'm sorry, Dave. I'm afraid I can't do that.

Dave: Open the pod bay doors, HAL. HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Phonetics & Phonology (Ling 450/550)
 - Sounds of a language, acoustics
 - Legal sound sequences in words

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL. HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Morphology (Ling 570)
 - Recognize, produce variation in word forms
 - Singular vs. plural:
 - Verb inflection:

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

Door + sg → "door" Door + pl → "doors"

be + 1st Person + sg + present \rightarrow "am"

Dave: Open the pod bay doors, HAL. HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Part-of-speech Tagging (Ling 570)
 - Identify word use in sentence
 - Bay (Noun) Not verb, adjective

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL. HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Syntax
 - (566: Analysis, 570: Chunking, 571: Parsing)
 - Order and group words in sentence
 - cf. *''I'm I do, sorry that afraid Dave I can't''

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL. HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Semantics (Word Meaning)
 - Individual (lexical) + Combined (Compositional)
 - 'Open' : AGENT cause THEME to become open;

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

• 'pod bay doors' \rightarrow doors to the 'pod bay' \rightarrow the bay which houses the pods.

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

- Pragmatics/Discourse/Dialogue (Ling 571)
 - Interpret utterances in context

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

- Pragmatics/Discourse/Dialogue (Ling 571)
 - Interpret utterances in context
 - Speech as acts (request vs. statement)

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

- Pragmatics/Discourse/Dialogue (Ling 571)
 - Interpret utterances in context
 - Speech as acts (request vs. statement)
 - Reference resolution: "I"=[HAL]; "that"=[open...doors]

• What does HAL (of 2001, A Space Odyssey) need to know to converse?

- Pragmatics/Discourse/Dialogue (Ling 571)
 - Interpret utterances in context
 - Speech as acts (request vs. statement)
 - Reference resolution: "I"=[HAL]; "that"=[open...doors]
 - Politeness: "I'm sorry, I'm afraid I can't..."

Roadmap

- Motivation
- Language and Intelligence
- Knowledge of Language
- Course Overview
- Intro to Syntax and Parsing

Course Overview: Shallow vs. Deep Processing

- Shallow processing (LING 570)
 - Less elaborate linguistic representations
 - Usually relies on surface forms (e.g. words)
 - Examples: HMM POS-tagging; FST morphology

Course Overview: Shallow vs. Deep Processing

- Shallow processing (LING 570)
 - Less elaborate linguistic representations
 - Usually relies on surface forms (e.g. words)
 - Examples: HMM POS-tagging; FST morphology
- Deep processing (LING 571)
 - Relies on *more elaborate* linguistic representations
 - Deep syntactic analysis (Parsing)
 - Rich spoken language understanding (NLU)

Language Processing Pipeline

Language Processing Pipeline

• "Deep" can be a tricky word these days in NLP

- "Deep" can be a tricky word these days in NLP
- "Deep Learning" ← "Deep Neural Networks" [572 WI, 575N SPR]

- "Deep" can be a tricky word these days in NLP
- "Deep Learning" ← "Deep Neural Networks" [572 WI, 575N SPR]
 - Refers to depth of network architecture:

- "Deep" can be a tricky word these days in NLP
- "Deep Learning" ← "Deep Neural Networks" [572 WI, 575N SPR]
 - Refers to depth of network architecture:

Depth

"Deep Processing" ← "Depth" of Analysis (Amt. of Abstraction)

W UNIVERSITY of WASHINGTON

- - Depth of parse graph (tree) is one representation

- - Depth of parse graph (tree) is one representation

● Depth of NN ⇒ Depth of Analysis

- Depth of NN ⇒ Depth of Analysis
- NNs are general function approximators

- Depth of NN ⇒ Depth of Analysis
- NNs are general function approximators
 - can be used for "shallow" analysis:
 - POS tagging, chunking, etc.

- Depth of NN ⇒ Depth of Analysis
- NNs are general function approximators
 - can be used for "shallow" analysis:
 - POS tagging, chunking, etc.
 - Can *also* be used for "deep" analysis:
 - Semantic role labeling
 - Parsing

- Depth of NN ⇒ Depth of Analysis
- NNs are general function approximators
 - can be used for "shallow" analysis:
 - POS tagging, chunking, etc.
 - Can *also* be used for "deep" analysis:
 - Semantic role labeling
 - Parsing
- In both paradigms, graph depth aids, but \Rightarrow abstraction

Cross-cutting Themes

• Ambiguity

• How can we select from among alternative analyses?

Cross-cutting Themes

• Ambiguity

• How can we select from among alternative analyses?

• Evaluation

- How well does this approach perform:
 - On a standard data set?
 - As part of a system implementation?

Cross-cutting Themes

• Ambiguity

• How can we select from among alternative analyses?

• Evaluation

- How well does this approach perform:
 - On a standard data set?
 - As part of a system implementation?

• Multilinguality

- Can we apply the same approach to other languages?
- How much must it be modified to do so?

• "I made her duck."

- "I made her duck."
- Could mean...
 - I caused her to duck down.
 - I made the (carved) duck she has.
 - I cooked duck for her.
 - cooked a duck that she owned.
 - I magically turned her into a duck.

Ambiguity: POS **VERB**

- "I made her duck."
- Could mean...
 - I caused her to duck down
 - I made the (carved) duck she has.
 - I cooked duck for her.
 - I cooked a duck that she owned,
 - I magically turned her into a duck.

- "I made her duck."
- Could mean...
 - I caused her to duck down.
 - I made the (carved) duck she bas.
 - cooked duck for her.
 - cooked a duck that she owned.
 - I magically turned her into a duck.

PRON

POSS

W UNIVERSITY of WASHINGTON

Ambiguity: Syntax

- "I made her duck."
- Could mean...
 - I made the (carved) duck she has

Ambiguity: Syntax

- "I made her duck."
- Could mean...
 - I made the (carved) duck she has

cooked a duck for her

W UNIVERSITY of WASHINGTON

"I made her duck."

"I made her duck."

I caused her to duck down

made = [AG] cause [TH] [to_do_sth]

"I made her duck."

I caused her to duck down

I cooked duck for her

made = [AG] cause [TH] [to_do_sth]

made = [AG] cook [TH] for [REC]

"I made her duck."

I caused her to duck down	made = [/
I cooked duck for her	made = [/
I cooked the duck she owned	made = [/

AG] cause [TH] [to_do_sth]

AG] cook [TH] for [REC]

AG] cook [TH]

"I made her duck."

I caused her to duck down	made = [/
I cooked duck for her	made = [/
I cooked the duck she owned	made = [/
I made the (carved) duck she has	made = [/ duck = du

AG] cause [TH] [to_do_sth]

AG] **cook** [TH] for [REC]

AG] cook [TH]

AG] sculpted [TH] uck-shaped-figurine

"I made her duck."

I caused her to duck down	made = [/
I cooked duck for her	made = [/
I cooked the duck she owned	made = [/
I made the (carved) duck she has	made = [/ duck = du
I magically turned her into a duck	made = [/ duck = ar

- AG] cause [TH] [to_do_sth]
- AG] **cook** [TH] for [REC]
- AG] cook [TH]
- AG] sculpted [TH]
- uck-shaped-figurine

AG] transformed [TH] himal

• Pervasive in language

- Pervasive in language
- Not a bug, a feature! (Piantadosi et al 2012)

- Pervasive in language
- Not a bug, a feature! (Piantadosi et al 2012)
- "I believe we should all pay our tax bill with a smile. I tried—but they wanted cash."

- Pervasive in language
- Not a bug, a feature! (Piantadosi et al 2012)
- "I believe we should all pay our tax bill with a smile. I tried—but they wanted cash."
- What would language be like without ambiguity?

• Challenging for computational systems

- Challenging for computational systems
- Issue we will return to again and again in class.

Course Information

- Website is main source of information: <u>https://www.shane.st/teaching/571/</u> aut21/
 - slides, office hours, resources, etc
- Canvas: lecture recordings, homework submission / grading
 - Communication!!! Please use the discussion board for questions about the course and its content.
 - Other students have same questions, can help each other.
 - May get prompter reply. The teaching staff will not respond outside of normal business hours, and may take up to 24 hours.

Course Information

- Grading, policies, etc: see link under "Policies" on course page
 - Shared policies for 570, 571, 572
- Office hours:
 - Shane: M 230-330 (GUG 418D), W 230-330 (Zoom; see website)
 - Haotian: TBA
- Homeworks:
 - 9, released on Wednesday, due the following Wednesday
 - With a pause during Thanksgiving week
 - [NB: also no class the Wednesday before Thanksgiving]

Course Information

Course Content

• Syntax

- (Probabilistic) Context-Free Grammars
 - Parsing algorithms (CKY, Earley)
- Dependency Parsing
- Semantics
 - Logical / event semantics, lambda calculus
 - Distributional semantics, lexical semantics
 - Semantic Role Labeling
- Pragmatics / Discourse
 - Reference, Co-reference, structure / discourse parsing

W UNIVERSITY of WASHINGTON

W What are you most looking forward to in 571 this quarter?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

Syntax Crash Course

LING 571 — Deep Processing Techniques for NLP September 29, 2021 Shane Steinert-Threlkeld

Roadmap

- Sentence Structure
 - More than a bag of words
- Representation
 - Context-free Grammars
 - Formal Definition

Applications

- Shallow techniques useful, but limited
- Deeper analysis supports:
 - Grammar checking and teaching
 - Question-answering

. . .

- Information extraction
- Dialogue understanding

Grammar and NLP

- "Grammar" in linguistics is **NOT** prescriptive high school grammar
 - Explicit rules
 - "Don't split infinitives!" etc.

- 4	

Grammar and NLP

- "Grammar" in linguistics is **NOT** prescriptive high school grammar
 - Explicit rules
 - "Don't split infinitives!" etc.
- "Grammar" in linguistics **IS**:
 - have
 - Largely implicit
 - Learned early, naturally

• How to capture structural knowledge of language as a native speaker would

- 4	

More than a Bag of Words

- Sentences are structured
- Choice of structure can impact:

More than a Bag of Words

- Sentences are structured
- Choice of structure can impact:
 - Meaning:
 - Dog bites man. vs. Man bites dog.

More than a Bag of Words

- Sentences are structured
- Choice of structure can impact:
 - Meaning:
 - Dog bites man. vs. Man bites dog.
 - Acceptability:
 - Colorless green ideas sleep furiously.
 - * Colorless sleep ideas furiously green.
 - * Dog man bites

W UNIVERSITY of WASHINGTON

Constituency

- **Constituents**: basic units of sentences
 - Word or group of words that act as a single unit syntactically

Constituency

- Constituents: basic units of sentences
 - Word or group of words that act as a single unit syntactically
- Phrases:

...

- Noun Phrase (NP)
- Verb Phrase (VP)
- Prepositional Phrase (PP)

Constituency

- Constituents: basic units of sentences
 - Word or group of words that act as a single unit syntactically
- Phrases:
 - Noun Phrase (NP)
 - Verb Phrase (VP)
 - Prepositional Phrase (PP)
 - . . .
- Single unit: type determined by "head"
 - e.g. N heads NP

Representing Sentence Structure

- Basic Units
 - Phrases (NP, VP, etc...)
 - Capture <u>constituent</u> structure

Representing Sentence Structure

- Basic Units
 - Phrases (NP, VP, etc...)
 - Capture <u>constituent</u> structure
- Subcategorization
 - (NP-SUBJ, VP-INTRANS, etc...)
 - Capture <u>argument</u> structure
 - Components expected by verbs

Representing Sentence Structure

- Basic Units
 - Phrases (NP, VP, etc...)
 - Capture <u>constituent</u> structure
- Subcategorization
 - (NP-SUBJ, VP-INTRANS, etc...)
 - Capture <u>argument</u> structure
 - Components expected by verbs
- Hierarchical

Representation: Context-free Grammars

- CFGs: 4-tuple
 - A set of terminal symbols: Σ
 - [think: words]
 - A set of nonterminal symbols: N
 - [think: phrase categories]
 - A set of productions *P*:
 - of the form $A \rightarrow \alpha$
 - Where A is a non-terminal and $\alpha \in \{\Sigma \cup N\}^*$
 - A start symbol $S \in N$

Representation: **Context-free Grammars**

• Altogether a grammar defines a language L

•
$$L = \{ w \in \Sigma^* | S \Rightarrow^* w \}$$

- The language L is the set of all words in which:
- $S \Rightarrow^* w$: w can be *derived* starting from S by some sequence of productions

CFG Components

• Terminals:

- Only appear as leaves of parse tree (hence the name)
- Right-hand side of productions (RHS)
- Words of the language
 - cat, dog, is, the, bark, chase...

CFG Components

• Terminals:

- Only appear as leaves of parse tree (hence the name)
- Right-hand side of productions (RHS)
- Words of the language
 - cat, dog, is, the, bark, chase...
- Non-terminals
 - Do not appear as leaves of parse tree
 - Appear on left or right side of productions
 - Represent constituent phrases of language
 - NP, VP, S[entence], etc...

Representation: Context-free Grammars

- Partial example:
 - Σ : the, cat, dog, bit, bites, man
 - N: NP, VP, Nom, Det, V, N, Adj
 - *P*:
 - $S \rightarrow NP VP;$
 - NP \rightarrow Det Nom;
 - Nom \rightarrow N Nom I N;
 - $VP \rightarrow V NP$;
 - $N \rightarrow cat; N \rightarrow dog; N \rightarrow man;$
 - $Det \rightarrow the;$
 - $V \rightarrow bit; V \rightarrow bites$
 - *S*: S

W UNIVERSITY of WASHINGTON

Parsing Goals

- Acceptance
 - Legal string in language?
 - Formally: rigid
 - Practically: degrees of acceptability

Parsing Goals

- Acceptance
 - Legal string in language?
 - Formally: rigid
 - Practically: degrees of acceptability
- Analysis
 - What structure produced the string
 - Produce one (or all) parses for the string

W UNIVERSITY of WASHINGTON

Parsing Goals

- Acceptance
 - Legal string in language?
 - Formally: rigid
 - Practically: degrees of acceptability
- Analysis
 - What structure produced the string
 - Produce one (or all) parses for the string
- Will develop techniques to produce analyses of sentences
 - Rigidly accept (with analysis) or reject
 - Produce varying degrees of acceptability

W UNIVERSITY of WASHINGTON

Sentence-level Knowledge: Syntax

• Different models of language that specify the *expressive power* of a formal language

Chomsky Hierarchy

S, A, B: non-terminals a, b: terminals α, β, γ : sequence of terminals + non-terminals [γ : never empty]

Representing Sentence Structure

- Why not just Finite State Models (Regular Expressions)?
 - Cannot describe some grammatical phenomena
 - Inadequate expressiveness to capture generalization

- Regular Language: $A \rightarrow w; A \rightarrow w^*B$
- Context-Free: $A \rightarrow \alpha A \beta$ (e.g.)
 - Allows recursion:

- Regular Language: $A \rightarrow w; A \rightarrow w^*B$
- Context-Free: $A \rightarrow \alpha A \beta$ (e.g.)
 - Allows recursion:
 - The luggage arrived

- Regular Language: $A \rightarrow w; A \rightarrow w^*B$
- Context-Free: $A \rightarrow \alpha A \beta$ (e.g.)
 - Allows recursion:
 - The luggage arrived
 - The luggage that the passengers checked arrived

- Regular Language: $A \rightarrow w; A \rightarrow w^*B$
- Context-Free: $A \rightarrow \alpha A \beta$ (e.g.)
 - Allows recursion:
 - The luggage arrived
 - The luggage that the passengers checked arrived

• The luggage that the passengers whom the storm delayed checked arrived

Recursion in Grammar

Recursion in Grammar

This is JD lying on the desk next to a picture of JD lying on the desk next to a picture of JD lying on the desk.

Recursion in Grammar

This is JD lying on the desk next to a picture of JD lying on the desk next to a picture of JD lying on the desk.

Exercise: write a toy grammar for producing this sentence!

Is Context-Free Enough?

• Natural language not finite state

Is Context-Free Enough?

- Natural language not finite state
- ...but do we need context-sensitivity?
 - Many articles have attempted to demonstrate we do
 - ...many have failed.

Is Context-Free Enough?

- Natural language not finite state
- ...but do we need context-sensitivity?
 - Many articles have attempted to demonstrate we do
 - ...many have failed.
- aibicidi

Solid proof for Swiss German: Cross-Serial Dependencies (Shieber, 1985)

Context-Sensitive Example

- Verbs and their arguments must be ordered *cross-serially*
 - Arguments and verbs must match

Questions so far?

HW#1 & Getting Started

LING 571 — Deep Processing Techniques for NLP September 29, 2021 Shane Steinert-Threlkeld

Department Cluster

- Assignments are **required** to run on department cluster
 - If you don't have a cluster account, request one ASAP!
 - Link to account request form on Canvas or below:
 - <u>vervet.ling.washington.edu/db/accountrequest-form.php</u>
- You are not required to develop on the cluster, but code must run on it

Department Cluster

- Assignments are **required** to run on department cluster
 - If you don't have a cluster account, request one ASAP!
 - Link to account request form on Canvas or below:
 - vervet.ling.washington.edu/db/accountrequest-form.php
- You are not required to develop on the cluster, but code must run on it
- **Reminder:** All but most simple tasks must be run via Condor

Condor

- Parallel computing management system
- All homework will be run via condor
- See documentation on CLMS wiki for:
 - Construction of condor scripts
 - Link also on course page under "Course Resources"

- Most assignments will use NLTK in Python
- Natural Language ToolKit (NLTK)
 - Large, integrated, fairly comprehensive
 - Stemmers
 - Taggers
 - Parsers
 - Semantic analysis
 - Corpus samples
 - ...& More
 - Extensively documented
 - Pedagogically Oriented
 - Implementations Strive for Clarity
 - ...sometimes at the expense of efficiency.

- nltk.org
 - Online book
 - Demos of software
 - How-Tos for specific components
 - API information, etc.

Python & NLTK

- NLTK is installed on the Cluster
 - Use Python 3.4+ with NLTK
 - **N.B.:** Python 2.7 is default
 - Use: **python3** to run, not **python**
 - More versions in /opt/python-*/bin/
 - keep that in mind (e.g. use full path).
- Data is also installed:
 - /corpora/nltk/nltk-data
- Written in Python
 - Some introductions at:
 - python.org, docs.python.org

• You can make a personal alias, but your bash scripts will not run in your personal environment, so

Python & NLTK

- Interactive mode allows experimentation, introspection: patas\$ python3
 - >>> import nltk
 - >>> dir(nltk)
 - ['AbstractLazySequence', 'AffixTagger', 'AlignedSent',
 - 'Alignment', 'AnnotationTask', 'ApplicationExpression',

 - 'BigramTagger', 'BinaryMaxentFeatureEncoding',...
 - >>> help(nltk.AffixTagger)

'Assignment', 'BigramAssocMeasures', 'BigramCollocationFinder',

- Will be using Canvas' file submission mechanism
 - Quick how to at: https://community.canvaslms.com/docs/DOC-10663-421254353

- Will be using Canvas' file submission mechanism
 - Quick how to at: https://community.canvaslms.com/docs/DOC-10663-421254353
- Homeworks due on Wednesday nights

- Will be using Canvas' file submission mechanism
 - Quick how to at: https://community.canvaslms.com/docs/DOC-10663-421254353
- Homeworks due on Wednesday nights
- 11:59 PM, Pacific Time

- Will be using Canvas' file submission mechanism
 - Quick how to at: https://community.canvaslms.com/docs/DOC-10663-421254353
- Homeworks due on Wednesday nights
- 11:59 PM, Pacific Time
- Generally, each assignment will include:
 - readme.{txt pdf}
 - hwX.tar.gz
 - Where "X" is the assignment number
 - tar -cvzf hwX.tar.gz <hw path>

HW #1

- Read in sentences and corresponding grammar
- Use NLTK to parse those sentences
- Goals:
 - Set up software environment for rest of course
 - Get familiar with NLTK
 - Work with parsers and CFGs

HW #1: Useful Tools

• Loading data:

- nltk.data.load(resource_url)
 - Reads in and processes formatted CFG/FCFG/treebank/etc
 - Returns a grammar from CFG
 - examples:

nltk.data.load('grammars/sample_grammars/toy.cfg')
nltk.data.load('file://' + my_grammar_path)

• (NB: absolute path!)

r1) CFG/FCFG/treebank/etc

HW #1: Useful Tools

• Loading data:

- nltk.data.load(resource_url)
 - Reads in and processes formatted CFG/FCFG/treebank/etc
 - Returns a grammar from CFG
 - examples:

nltk.data.load('grammars/sample grammars/toy.cfg') nltk.data.load('file://' + my_grammar path)

- (NB: absolute path!)
- Tokenization:
 - nltk.word_tokenize(mystring)
 - Returns array of tokens in string

HW #1: Useful Tools

- Parsing:
 - parser = nltk.parse.EarleyChartParser(grammar)
 - Returns parser based on the grammar
 - parser.parse(token_list)
 - Returns iterator of parses:

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	for I	item print	in (ite	pars em)	ser.pa	rse(
(S (NP	(Det	the	(N	dog))	(VP

tokens):

(V chased) (NP (Det the) (N cat))

