Probabilistic Parsing: Issues \& Improvement

LING 571 - Deep Processing Techniques for NLP
October 19, 2020
Shane Steinert-Threlkeld

Announcements

- HW2 grades posted
- Reference code soon available in
- /dropbox/20-21/571/hw2/reference_code
- NB: not needed for HW3; you can assume that all grammars are already in CNF

Homework Tips

- Use nltk. load for reading grammars; will save you and TA time and headaches
- Run your code on patas to produce the output you submit in TAR file
- Some discrepancies found that seem due to different environment
- When in doubt, use full paths to python binaries, etc
- readme. \{txt|pdf\}: this should NOT be inside your TAR file, but a separate upload on Canvas

Notes on HW \#3

- Python's range has many use cases by manipulating start/end, and step
- range (n) is equivalent to range ($0, \mathrm{n}, 1$)
- Reminder: the rhs= argument in NLTK's grammar . productions () method only matches the first symbol, not an entire string
- You'll want to implement an efficient look-up based on RHS
- HW3: compare your output to running HW1 parser on the same grammar/ sentences
- order of output in ambiguous sentences could differ

Language Does the Darnedest Things

Just in case your wondering.

This is a ship -shipping ship , shipping shipping ships.

PCFG Induction

Learning Probabilities

- Simplest way:
- Use treebank of parsed sentences

Learning Probabilities

- Simplest way:
- Use treebank of parsed sentences
- To compute probability of a rule, count:

Learning Probabilities

- Simplest way:
- Use treebank of parsed sentences
- To compute probability of a rule, count:
- Number of times a nonterminal is expanded:

$$
\boldsymbol{\Sigma}_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)
$$

Learning Probabilities

- Simplest way:
- Use treebank of parsed sentences
- To compute probability of a rule, count:
- Number of times a nonterminal is expanded:
- Number of times a nonterminal is expanded by a given rule:

$$
\begin{aligned}
& \Sigma_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma) \\
& \quad \text { Count }(\alpha \rightarrow \beta)
\end{aligned}
$$

Learning Probabilities

- Simplest way:
- Use treebank of parsed sentences
- To compute probability of a rule, count:
- Number of times a nonterminal is expanded:
- Number of times a nonterminal is expanded by a given rule:

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\gamma} \text { Count }(\alpha \rightarrow \gamma) \\
& \quad \text { Count }(\alpha \rightarrow \beta)
\end{aligned}
$$

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

Learning Probabilities

- Simplest way:
- Use treebank of parsed sentences
- To compute probability of a rule, count:
- Number of times a nonterminal is expanded:
- Number of times a nonterminal is expanded by a given rule:

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma) \\
& \quad \text { Count }(\alpha \rightarrow \beta)
\end{aligned}
$$

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

- Alternative: Learn probabilities by re-estimating
- (Later)

Problems with PCFGs

Problems with PCFGs

- Independence Assumption
- Assume that rule probabilities are independent

Problems with PCFGs

- Independence Assumption
- Assume that rule probabilities are independent
- Lack of Lexical Conditioning
- Lexical items should influence the choice of analysis

Issues with PCFGs: Independence Assumption

- Context Free \Rightarrow Independence Assumption
- Rule expansion is context-independent
- Allows us to multiply probabilities

Issues with PCFGs: Independence Assumption

- Context Free \Rightarrow Independence Assumption
- Rule expansion is context-independent
- Allows us to multiply probabilities
- If we have two rules:
- $N P \rightarrow$ DT NN [0.28]
- $N P \rightarrow P R P \quad[0.25]$

Issues with PCFGs: Independence Assumption

- Context Free \Rightarrow Independence Assumption
- Rule expansion is context-independent
- Allows us to multiply probabilities
- If we have two rules:
- $N P \rightarrow D T$ NN [0.28]
- $N P \rightarrow P R P \quad[0.25]$

Semantic Role of NPs in Switchboard Corpus
Pronomial Non-Pronomial

Subject	91%	9%
Object	34%	66%

Issues with PCFGs: Independence Assumption

- Context Free \Rightarrow Independence Assumption
- Rule expansion is context-independent
- Allows us to multiply probabilities
- If we have two rules:
- $N P \rightarrow$ DT NN [0.28]
- $N P \rightarrow P R P \quad[0.25]$

Semantic Role of NPs in Switchboard Corpus
Pronomial Non-Pronomial

Subject	91%	9%
Object	34%	66%

- What does this new data tell us?

Issues with PCFGs: Independence Assumption

- Context Free \Rightarrow Independence Assumption
- Rule expansion is context-independent
- Allows us to multiply probabilities
- If we have two rules:
- $N P \rightarrow D T$ NN [0.28]
- $N P \rightarrow P R P \quad[0.25]$

Semantic Role of NPs in Switchboard Corpus
Pronomial Non-Pronomial

Subject	91%	9%
Object	34%	66%

- What does this new data tell us?
- $N P \rightarrow D T$ NN [0.09 if $N P_{\Theta=s u b j e c t ~}$ else 0.66$]$
- $N P \rightarrow P R P \quad\left[0.91\right.$ if $N P_{\Theta=\text { subject }}$ else 0.34$]$

Issues with PCFGs: Independence Assumption

- Context Free \Rightarrow Independence Assumption
- Rule expansion is context-independent
- Allows us to multiply probabilities
- If we have two rules:
- $N P \rightarrow D T$ NN [0.28]
- $N P \rightarrow P R P \quad[0.25]$

Semantic Role of NPs in Switchboard Corpus
Pronomial Non-Pronomial

Subject	91%	9%
Object	34%	66%

- What does this new data tell us?
- $N P \rightarrow D T$ NN [0.09 if $N P_{\Theta=\text { subject }}$ else 0.66]
- $N P \rightarrow P R P \quad\left[0.91\right.$ if $N P_{\Theta=\text { subject }}$ else 0.34$]$
...Can try parent annotation

Issues with PCFGs: Lexical Conditioning

("into a bin" = location of sacks after dumping) OK!

("into a bin" = *the sacks which were located in PP) not OK

Issues with PCFGs: Lexical Conditioning

("in a bin" = location of sacks before dumping) OK!
("into a bin" = *the sacks which were located in PP) not OK

Issues with PCFGs: Lexical Conditioning

- workers dumped sacks into a bin
- into should prefer modifying dumped
- into should disprefer modifying sacks
- fishermen caught tons of herring
- of should prefer modifying tons
- of should disprefer modifying caught

Issues with PCFGs: Coordination Ambiguity


```
NP -> NP Conj NP
N P \rightarrow N P P P
Noun -> "dogs"
PP }->\mathrm{ Prep NP
Prep -> "in"
NP-> Noun
Noun -> "houses"
Conj }->\mathrm{ "and"
NP }->\mathrm{ Noun
Noun -> "cats"
Same Rules!
```


Issues with PCFGs: Coordination Ambiguity

$N P \rightarrow$ NP Conj NP
$N P \rightarrow N P P P$
Noun \rightarrow "dogs"
$P P \rightarrow$ Prep NP \quad Same Rules!
Prep \rightarrow "in"
$N P \rightarrow$ Noun
Noun \rightarrow "houses"
Conj \rightarrow "and"
$N P \rightarrow$ Noun
Noun \rightarrow "cats"

$$
\begin{aligned}
& N P \rightarrow N P \text { PP } \\
& \text { Noun } \rightarrow \text { "dogs" } \\
& P P \rightarrow \text { Prep NP } \\
& \text { Prep } \rightarrow \text { "in" } \\
& N P \rightarrow \text { NP Conj NP } \\
& N P \rightarrow \text { Noun } \\
& \text { Noun } \rightarrow \text { "houses" } \\
& \text { Conj } \rightarrow \text { "and" } \\
& N P \rightarrow \text { Noun } \\
& \text { Noun } \rightarrow \text { "cats" }
\end{aligned}
$$

Issues with PCFGs: Coordination Ambiguity

$N P \rightarrow$ NP Conj NP
$N P \rightarrow$ NP PP
Noun \rightarrow "dogs"
$P P \rightarrow$ Prep NP \quad Same Rules!
Prep \rightarrow "in"
$N P \rightarrow$ Noun
Noun \rightarrow "houses"
$C o n j \rightarrow$ "and"
$N P \rightarrow$ Noun
Noun \rightarrow "cats"
$N P \rightarrow$ NP PP
Noun \rightarrow "dogs"
$P P \rightarrow$ Prep NP
Prep \rightarrow "in"
$N P \rightarrow$ NP Conj NP
$N P \rightarrow$ Noun
Noun \rightarrow "houses"
$C o n j \rightarrow$ "and"
$N P \rightarrow$ Noun
Noun \rightarrow "cats"

Improving PCFGs

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

Improving PCFGs: Parent Annotation

- To handle the $N P \rightarrow P R P\left[0.91\right.$ if $N P_{\Theta=\text { subject }}$ else 0.34$]$

Improving PCFGs: Parent Annotation

- To handle the $N P \rightarrow P R P\left[0.91\right.$ if $N P_{\Theta=\text { subject }}$ else 0.34$]$

Improving PCFGs: Parent Annotation

- To handle the $N P \rightarrow P R P\left[0.91\right.$ if $N P_{\Theta=\text { subject }}$ else 0.34$]$

Improving PCFGs: Parent Annotation

- Advantages:
- Captures structural dependencies in grammar

Improving PCFGs: Parent Annotation

- Advantages:
- Captures structural dependencies in grammar
- Disadvantages:
- Explodes number of rules in grammar
- Same problem with subcategorization
- Results in sparsity problems

Improving PCFGs: Parent Annotation

- Advantages:
- Captures structural dependencies in grammar
- Disadvantages:
- Explodes number of rules in grammar
- Same problem with subcategorization
- Results in sparsity problems
- Strategies to find an optimal number of splits
- Petrov et al (2006)

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

Improving PCFGs: Lexical "Heads"

- Remember back to syntax intro (Lecture \#1)
- Phrases are "headed" by key words
- VP are headed by V
- NP by NN, NNS, PRON
- PP by PREP
- We can take advantage of this in our grammar!

Improving PCFGs: Lexical Dependencies

- As we've seen, some rules should be conditioned on certain words
- Proposal: annotate nonterminals with lexical head

$$
\begin{aligned}
& V P \rightarrow V B D N P P P \\
& V P(\text { dumped }) \rightarrow V B D(\text { dumped }) N P(\text { sacks }) P P(\text { into })
\end{aligned}
$$

- Additionally: annotate with lexical head + POS
$V P($ dumped, $\boldsymbol{V B} \boldsymbol{D}) \rightarrow V B D($ dumped, VBD) $N P($ sacks, $N \boldsymbol{N} \boldsymbol{N} \boldsymbol{S}) P P($ into, $\boldsymbol{I N})$

Lexicalized Parse Tree

Lexicalized Parse Tree

Lexicalized Parse Tree

Lexicalized Parse Tree

Improving PCFGs: Lexical Dependencies

- Upshot: heads propagate up tree:

Improving PCFGs: Lexical Dependencies

- Upshot: heads propagate up tree:
- VP $\rightarrow V B D($ dumped, VBD) $N P($ sacks, NNS) $P P($ into, P)
- $N P \rightarrow$ NNS(sacks, NNS) $P P$ (into, P)

Improving PCFGs: Lexical Dependencies

- Upshot: heads propagate up tree:
- $V P \rightarrow V B D($ dumped, $V B D) N P($ sacks, $N N S) P P($ into, $P)$
- $N P \rightarrow N N S($ sacks, NNS $) P P($ into, $P)$

Improving PCFGs: Lexical Dependencies

- Upshot: heads propagate up tree:
- $V P \rightarrow V B D($ dumped, $V B D) N P($ sacks, $N N S) P P($ into, $P)$
- $N P \rightarrow$ NNS(sacks, NNS) $P P($ into, $P)$

Improving PCFGs: Lexical Dependencies

- Downside:
- Rules far too specialized - will be sparse
- Solution:
- Assume conditional independence
- Create more rules

Improving PCFGs: Collins Parser

- Proposal:
- LHS \rightarrow LeftOfHead ... Head ... RightOfHead
- Instead of calculating $P($ EntireRule), which is sparse:
- Calculate:
- Probability that $L H S$ has nonterminal phrase H given head-word $h w . .$.
- \times Probability of modifiers to the left given head-word $h w \ldots$
- \times Probability of modifiers to the right given head-word $h w .$. .

Collins Parser Example

Collins Parser Example

$P(V P \rightarrow V B D N P P P \mid V P$, dumped $)$

Collins Parser Example

$$
\begin{aligned}
& P(V P \rightarrow V B D \text { NP PP } \mid V P, \text { dumped }) \\
& =\frac{\text { Count }(V P(\text { dumped }) \rightarrow V B D N P P P)}{\Sigma_{\beta} \text { Count }(V P(\text { dumped }) \rightarrow \beta)}
\end{aligned}
$$

Collins Parser Example

$$
\begin{aligned}
& P(V P \rightarrow V B D N P P P \mid V P, \text { dumped }) \\
& =\frac{\operatorname{Count}(V P(\text { dumped }) \rightarrow V B D N P P P)}{\sum_{\beta} \operatorname{Count}(V P(\text { dumped }) \rightarrow \beta)} \\
& =\frac{6}{9}=0.67
\end{aligned}
$$

Collins Parser Example

$$
\begin{aligned}
& P(V P \rightarrow V B D N P P P \mid V P, \text { dumped }) \\
& =\frac{\text { Count }(V P(\text { dumped }) \rightarrow V B D N P P P)}{\sum_{\beta} \operatorname{Count}(V P(\text { dumped }) \rightarrow \beta)} \\
& =\frac{6}{9}=0.67
\end{aligned}
$$

$P_{R}($ into $\mid P P$, dumped $)$

Collins Parser Example

$$
\begin{aligned}
& P(V P \rightarrow V B D N P P P \mid V P, \text { dumped }) \\
& =\frac{\operatorname{Count}(V P(\text { dumped }) \rightarrow V B D N P P P)}{\sum_{\beta} \operatorname{Count}(V P(\text { dumped }) \rightarrow \beta)} \\
& =\frac{6}{9}=0.67
\end{aligned}
$$

$P_{R}($ into $\mid P P$, dumped $)$
$=\frac{\operatorname{Count}(X(\text { dumped }) \rightarrow \ldots P P(\text { into }) \ldots)}{\sum_{\beta} \operatorname{Count}(X(\text { dumped }) \rightarrow \ldots P P \ldots)}$

Collins Parser Example

$$
\begin{aligned}
& P(V P \rightarrow V B D N P P P \mid V P, \text { dumped }) \\
& =\frac{\operatorname{Count}(V P(\text { dumped }) \rightarrow V B D N P P P)}{\sum_{\beta} \operatorname{Count}(V P(\text { dumped }) \rightarrow \beta)} \\
& =\frac{6}{9}=0.67
\end{aligned}
$$

$P_{R}($ into $\mid P P$, dumped $)$
$=\frac{\operatorname{Count}(X(\text { dumped }) \rightarrow \ldots P P(\text { into }) \ldots)}{\sum_{\beta} \operatorname{Count}(X(\text { dumped }) \rightarrow \ldots P P \ldots)}$
$=\frac{2}{9}=0.22$

Collins Parser Example

$P(V P \rightarrow V B D N P P P \mid V P$, dumped $)$
$=\frac{\text { Count }(V P(\text { dumped }) \rightarrow V B D N P P P)}{\sum_{\beta} \text { Count }(V P(\text { dumped }) \rightarrow \beta)}$
$=\frac{6}{9}=0.67$
$P_{R}($ into $\mid P P$, dumped $)$
$=\frac{\operatorname{Count}(X(\text { dumped }) \rightarrow \ldots P P(\text { into }) \ldots)}{\sum_{\beta} \operatorname{Count}(X(\text { dumped }) \rightarrow \ldots P P \ldots)}$
$=\frac{2}{9}=0.22$

$$
\begin{aligned}
& P(V P \rightarrow V B D N P \mid V P, \text { dumped }) \\
& =\frac{\text { Count }(V P(\text { dumped }) \rightarrow V B D N P)}{\sum_{\beta} \operatorname{Count}(V P(\text { dumped }) \rightarrow \beta)} \\
& =\frac{1}{9}=0.11
\end{aligned}
$$

Collins Parser Example

$P(V P \rightarrow V B D N P P P \mid V P$, dumped $)$
$=\frac{\operatorname{Count}(V P(\text { dumped }) \rightarrow V B D N P P P)}{\sum_{\beta} \operatorname{Count}(V P(\text { dumped }) \rightarrow \beta)}$
$=\frac{6}{9}=0.67$
$P_{R}($ into $\mid P P$, dumped $)$
$=\frac{\operatorname{Count}(X(\text { dumped }) \rightarrow \ldots \text { PP (into) } \ldots)}{\sum_{\beta} \operatorname{Count}(X(\text { dumped }) \rightarrow \ldots \text { PP } \ldots)}$
$=\frac{2}{9}=0.22$

$$
\begin{aligned}
& P(V P \rightarrow V B D N P \mid V P, \text { dumped }) \\
& =\frac{\text { Count }(V P(\text { dumped }) \rightarrow V B D N P)}{\sum_{\beta} \text { Count }(V P(\text { dumped }) \rightarrow \beta)} \\
& =\frac{1}{9}=0.11
\end{aligned}
$$

$$
\begin{aligned}
& P_{R}(\text { into } \mid P P, \text { sacks }) \\
& =\frac{\operatorname{Count}(X(\text { sacks }) \rightarrow \ldots P P(\text { into }) \ldots)}{\sum_{\beta} \operatorname{Count}(X(\text { sacks }) \rightarrow \ldots P P \ldots)} \\
& =\frac{0}{0}
\end{aligned}
$$

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

CNF Factorization \& Markovization

- CNF Factorization:
- Converts n-ary branching to binary branching
- Can maintain information about original structure
- Neighborhood history and parent

Different Markov Orders

Markovization and Costs

PCFG	Time(s)	Words/s	(V\|	\|P		LR	LP	FI
Right-factored	4848	6.7	10105	23220	69.2	73.8	71.5	
Right-factored, Markov order-2	1302	24.9	2492	11659	68.8	73.8	71.3	
Right-factored, Markov order-I	445	72.7	564	6354	68.0	730	70.5	
Right-factored, Markov order-0	206	157.1	99	3803	61.2	65.5	63.3	
Parent-annotated, Right-factored, Markov order-2	7510	4.3	5876	22444	76.2	78.3	77.2	

from Mohri \& Roark 2006

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

Reranking

- Issue: Locality
- PCFG probabilities associated with rewrite rules
- Context-free grammars are, well, context-free
- Previous approaches create new rules to incorporate context
- Need approach that incorporates broader, global info

Discriminative Parse Reranking

- General approach:
- Parse using (L)PCFG
- Obtain top-N parses
- Re-rank top-N using better features
- Use discriminative model (e.g. MaxEnt) to rerank with features:
- right-branching vs. left-branching
- speaker identity
- conjunctive parallelism
- fragment frequency

Reranking Effectiveness

- How can reranking improve?
- Results from Collins and Koo (2005), with 50-best

System	Accuracy
Baseline	0.897
Oracle	0.968
Discriminative	0.917

- "Oracle" is to automatically choose the correct parse if in N -best

Improving PCFGs: Tradeoffs

- Pros:
- Increased accuracy/specificity
- e.g. Lexicalization, Parent annotation, Markovization, etc
- Cons:
- Explode grammar size
- Increased processing time
- Increased data requirements
- How can we balance?

Improving PCFGs: Efficiency

- Beam thresholding
- Heuristic Filtering

Efficiency

- PCKY is $|G| \cdot n^{3}$
- Grammar can be huge
- Grammar can be extremely ambiguous
- Hundreds of analyses not unusual
- ...but only care about best parses
- Can we use this to improve efficiency?

Beam Thresholding

- Inspired by Beam Search
- Assume low probability parses unlikely to yield high probability overall
- Keep only top k most probable partial parses
- Retain only k choices per cell
- For large grammars, maybe 50-100
- For small grammars, 5 or 10

Heuristic Filtering

- Intuition: Some rules/partial parses unlikely to create best parse
- Proposal: Don't store these in table.
- Exclude:
- Low frequency: e.g. singletons
- Low probability: constituents \boldsymbol{X} s.t. $P(\boldsymbol{X})<10^{-200}$
- Low relative probability:
- Exclude \boldsymbol{X} if there exists \boldsymbol{Y} s.t. $P(\boldsymbol{Y})>100 \times P(\boldsymbol{X})$

