Computation Graphs + Backpropagation LING 574 Deep Learning for NLP Shane Steinert-Threlkeld



Announcements

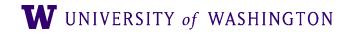
- HW1 reference code made available in hw1/ref in our dropbox
- HW2's vocabulary.py is a symlink to vocabulary.py in hw1/ref
 - You can symbolic link to it from your directory to use:
 - In -s /dropbox/23-24/574/hw1/ref/vocabulary.py vocabulary.py
- Some old file path issues: should be fixed now, but let us know!

Today's Plan

- Computation graph abstraction
- Backpropagation
 - "Calculus on computation graphs"
- Forward/backward API

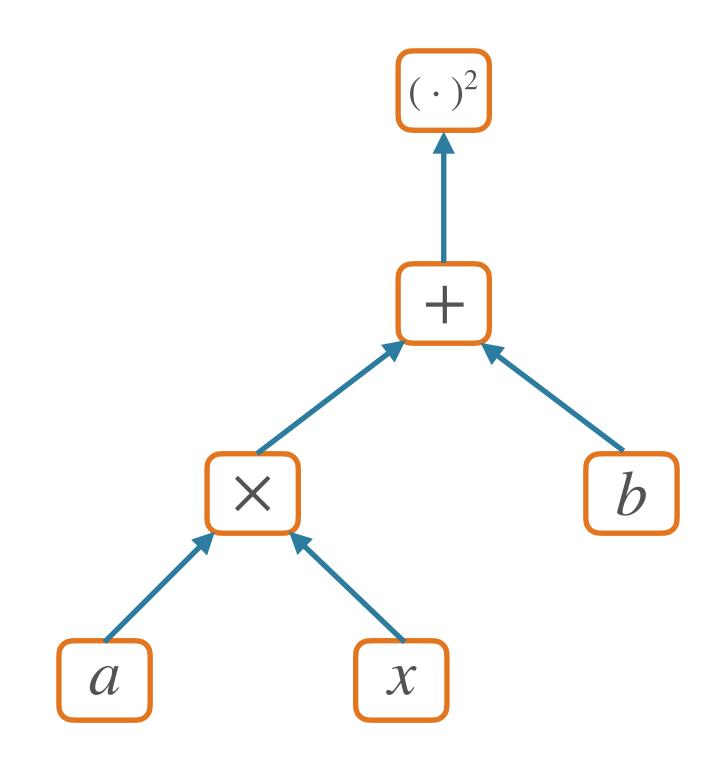
• Finish neural network intro [activation functions, batch computation, ...]

Computation Graphs



What is a computation graph?

- The "descriptive" language of deep learning frameworks
 - e.g. TensorFlow, PyTorch
- Essentially, "parse trees" of mathematical expressions
 - Captures dependence between sub-expressions
- Two types of computation:
 - Forward: compute outputs given inputs
 - Backward: compute gradients

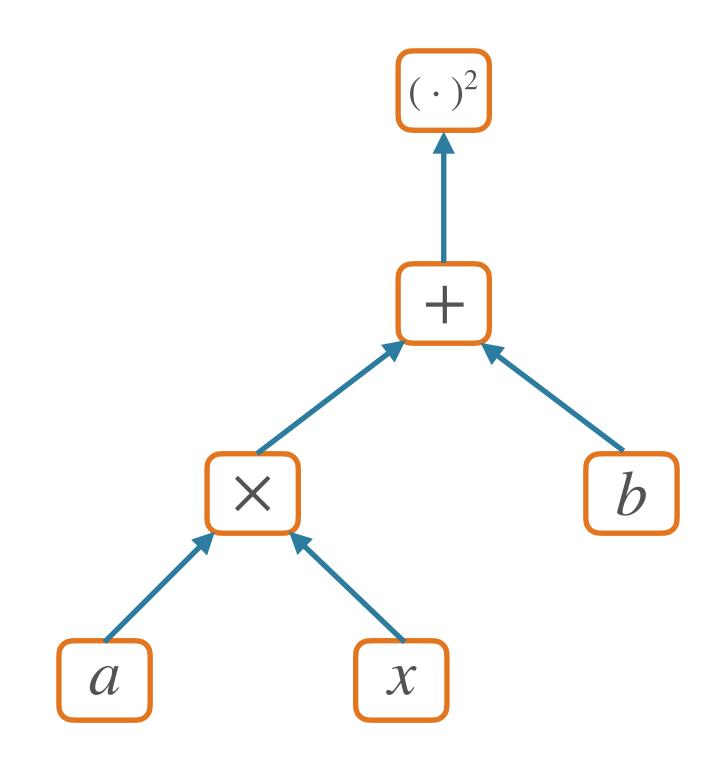


$f(x; a, b) = (ax + b)^2$

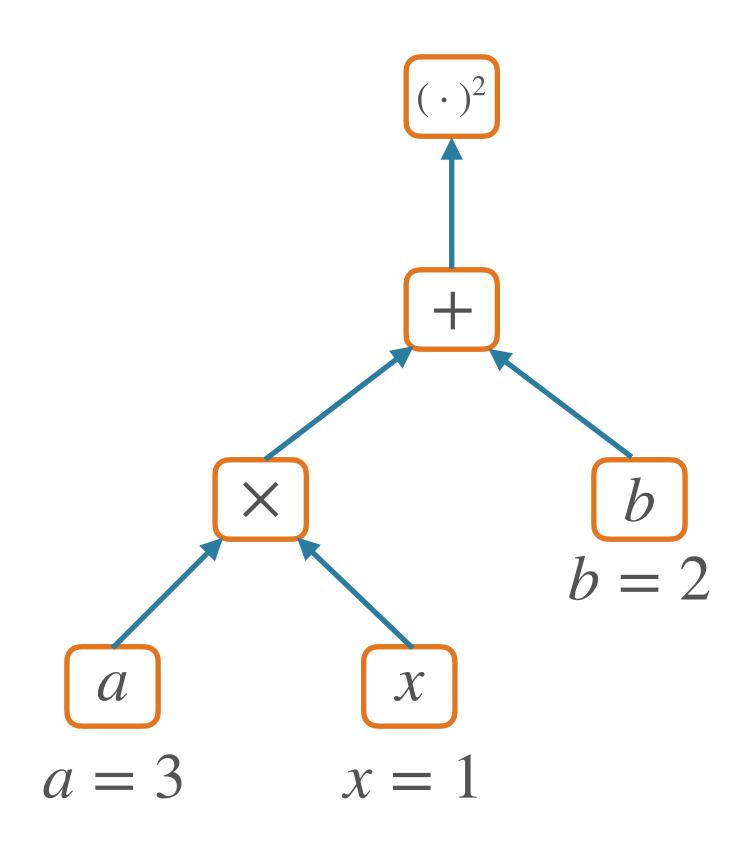
Forward Pass

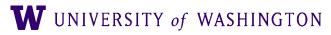
- Compute output(s) given inputs
 - Inputs: leaf nodes; need values
 - Outputs: those with no children

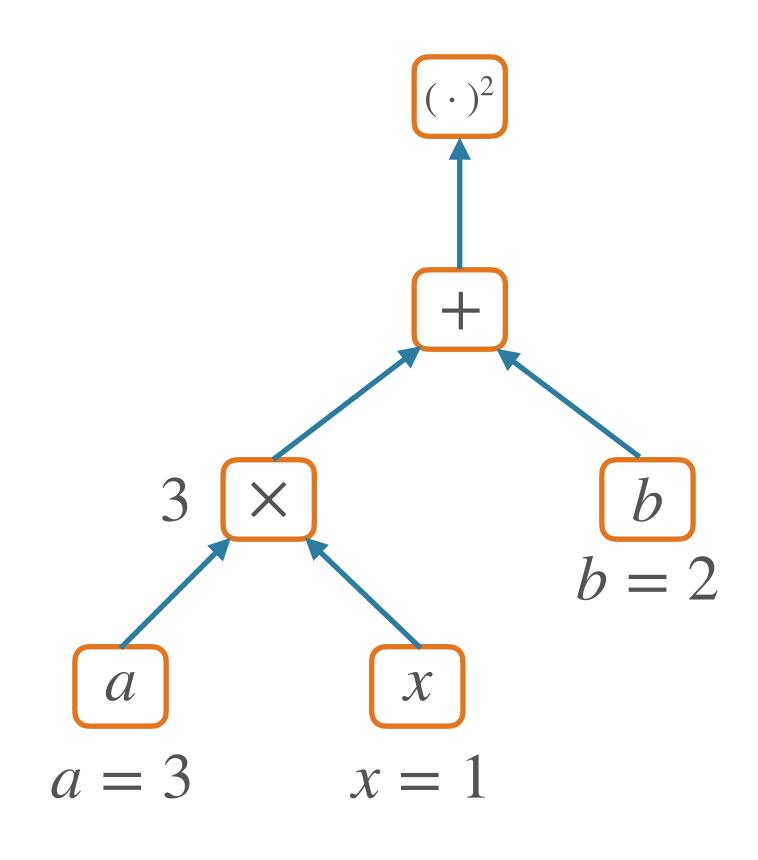
- Forward computation:
 - Loop over nodes in topological order [i.e. children after parents]
 - Compute value of a node given values of its parent nodes

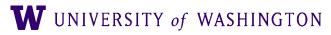


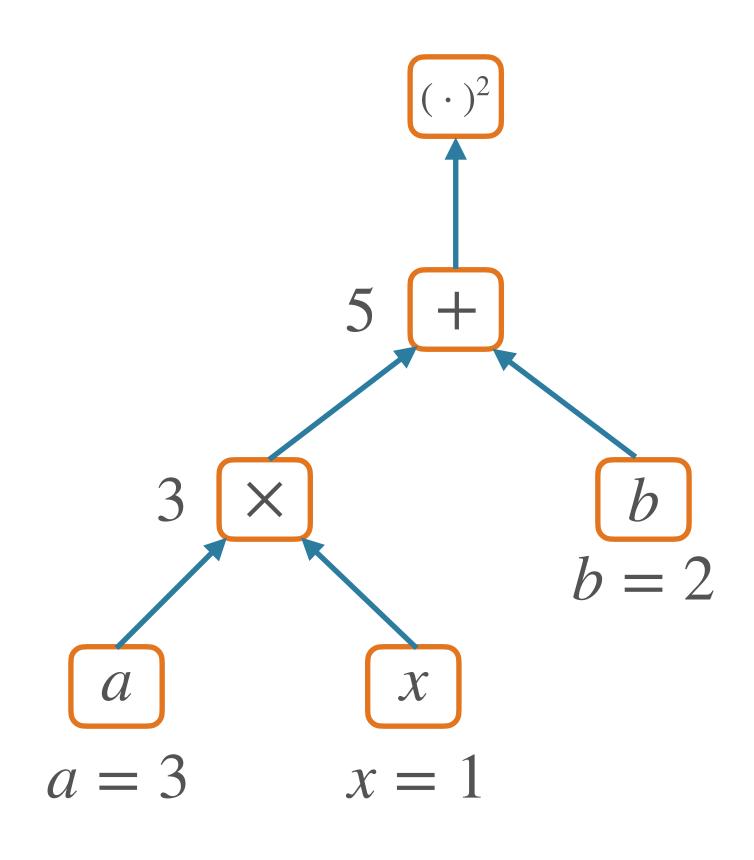
$f(x; a, b) = (ax + b)^2$

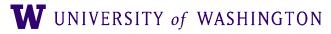


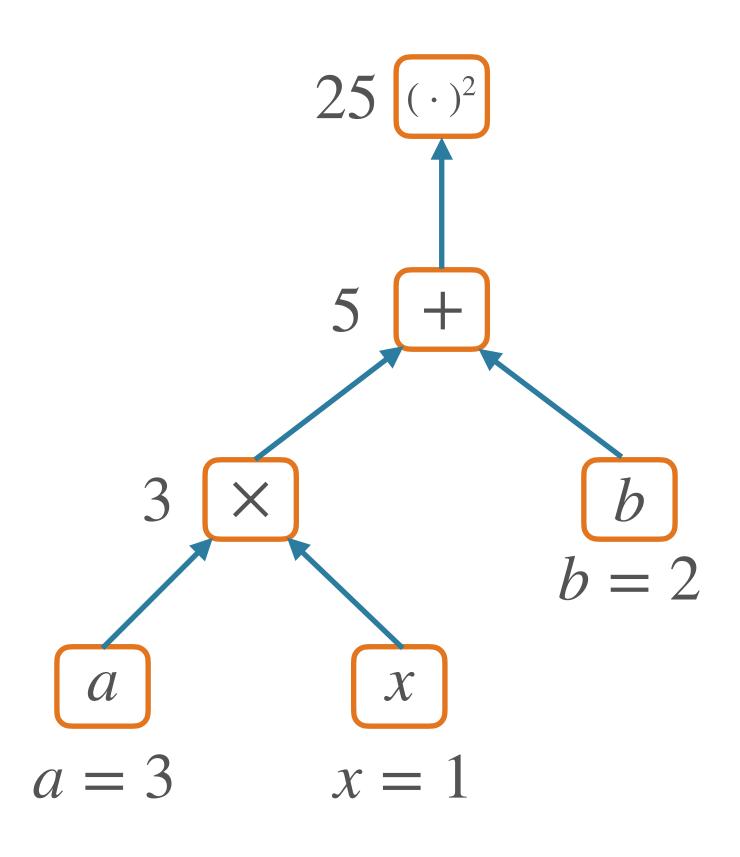


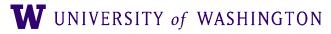








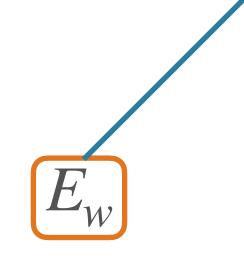




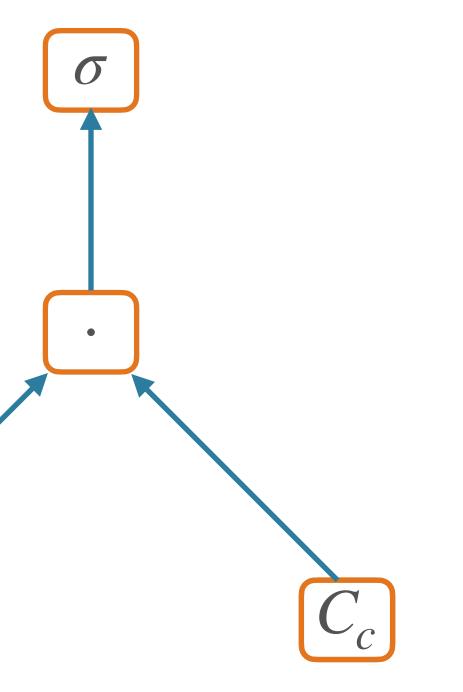
Nodes in a Graph

- Node: a Tensor value
 - e.g. numpy ndarray; n-dimensional array of values
 - Scalar, vector, matrix, ...
- Edge: function argument
 - The value of a node is a function of the values of its parents
- For **forward**: node computes its value based on its parents' values

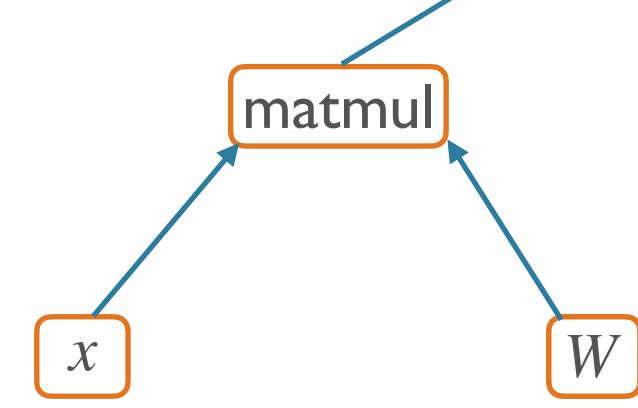
SGNS as a Graph



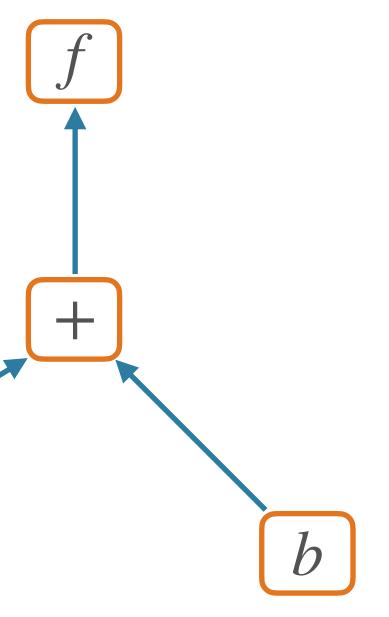
 $P(1 \mid w, c) = \sigma \left(E_w \cdot C_c \right)$



Hidden Layer Graph



$\hat{y} = f(xW + b)$

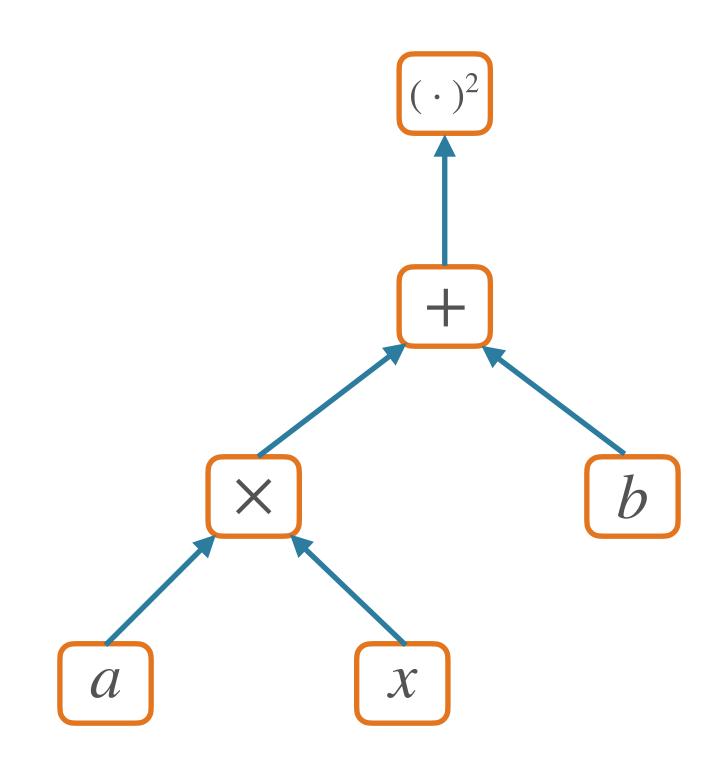


Backpropagation

- So far, this is just fancy re-writing of basic mathematical computation
- The real victory of the graph abstraction comes in computing *derivatives*
- Backpropagation:
 - A dynamic programming algorithm on computation graphs that allows the gradient of an output to be computed with respect to every node in the graph

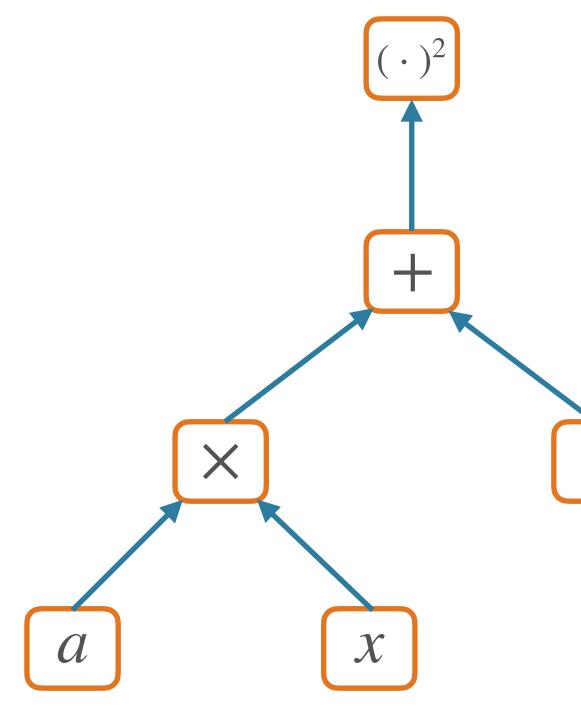
So what?

Computing Derivatives



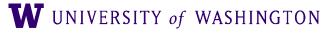
$f(x;a,b) = (ax+b)^2$

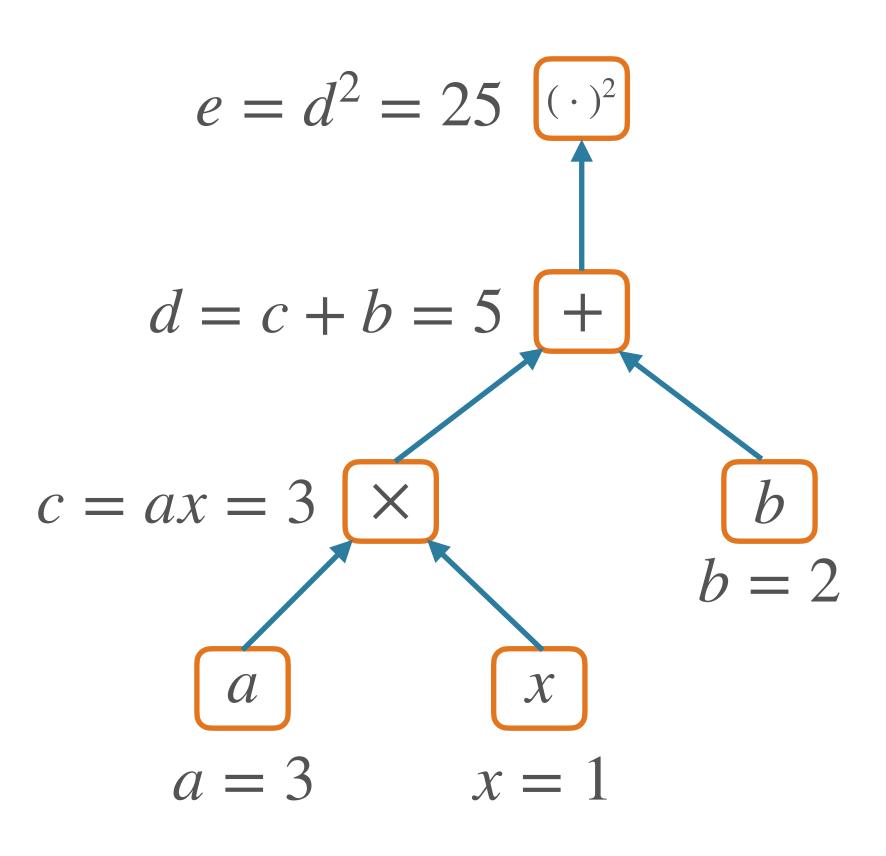
Computing Derivatives

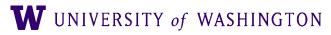


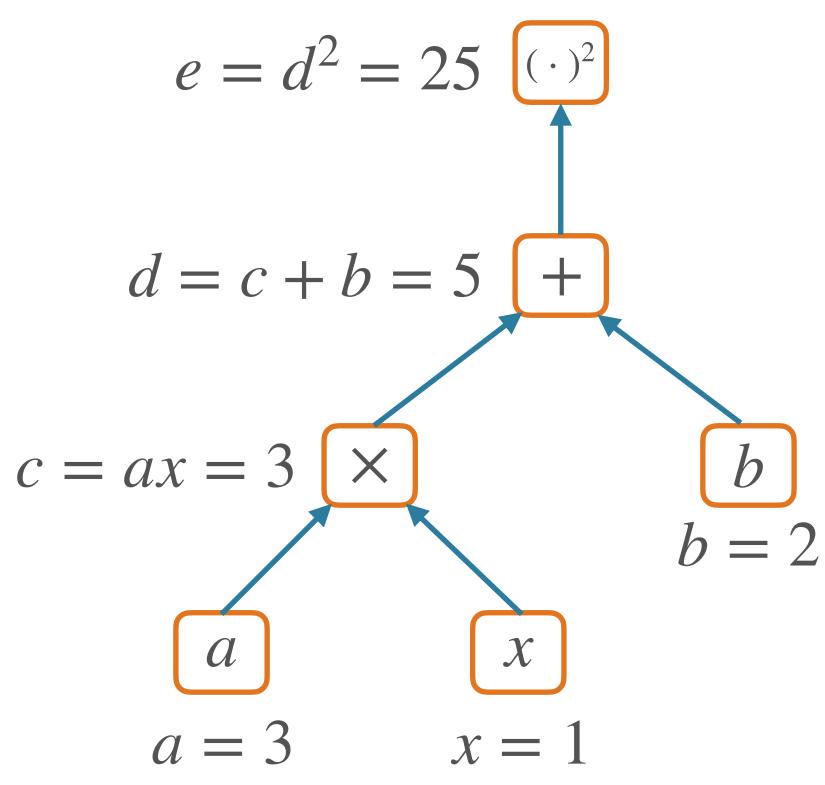
 $f(x;a,b) = (ax+b)^2$

 $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial (ax+b)} \frac{\partial (ax+b)}{\partial x}$ = 2(ax+b)a $\frac{\partial f}{\partial a} = 2(ax+b)x$ $\frac{\partial f}{\partial b} = 2(ax+b)$



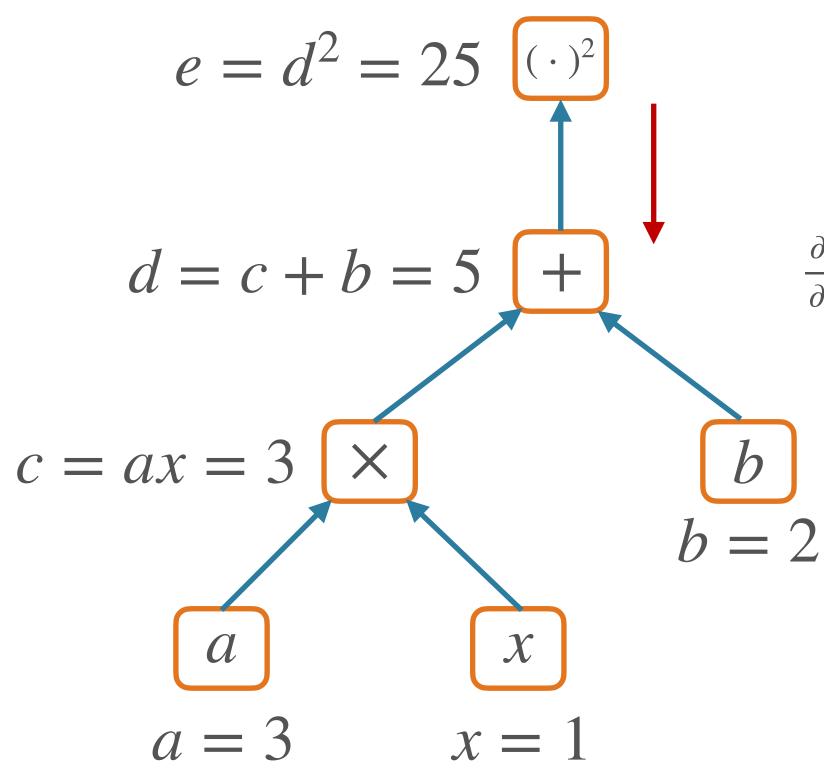






$f(x; a, b) = (ax + b)^2$

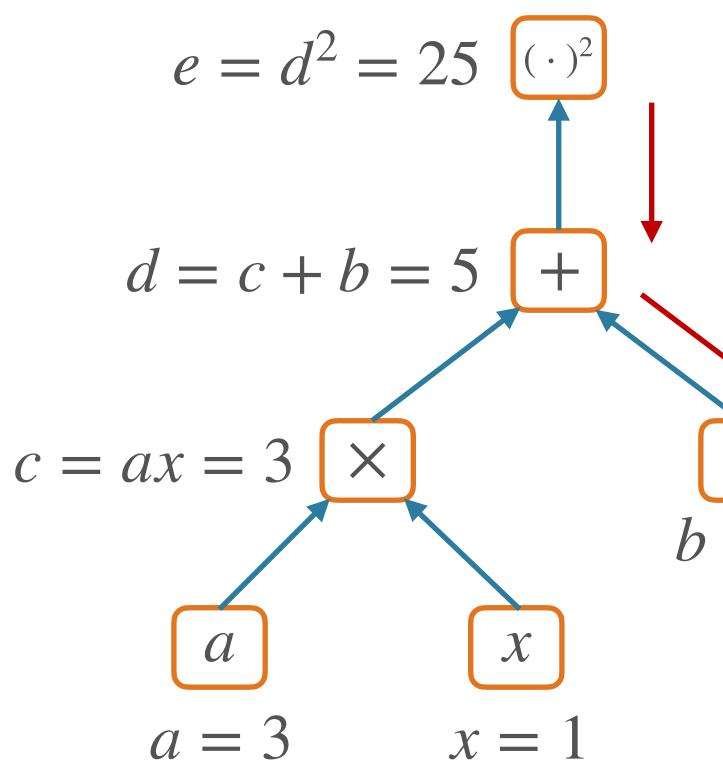
$$\frac{\partial e}{\partial e} = 1$$



 $f(x;a,b) = (ax+b)^2$

$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$



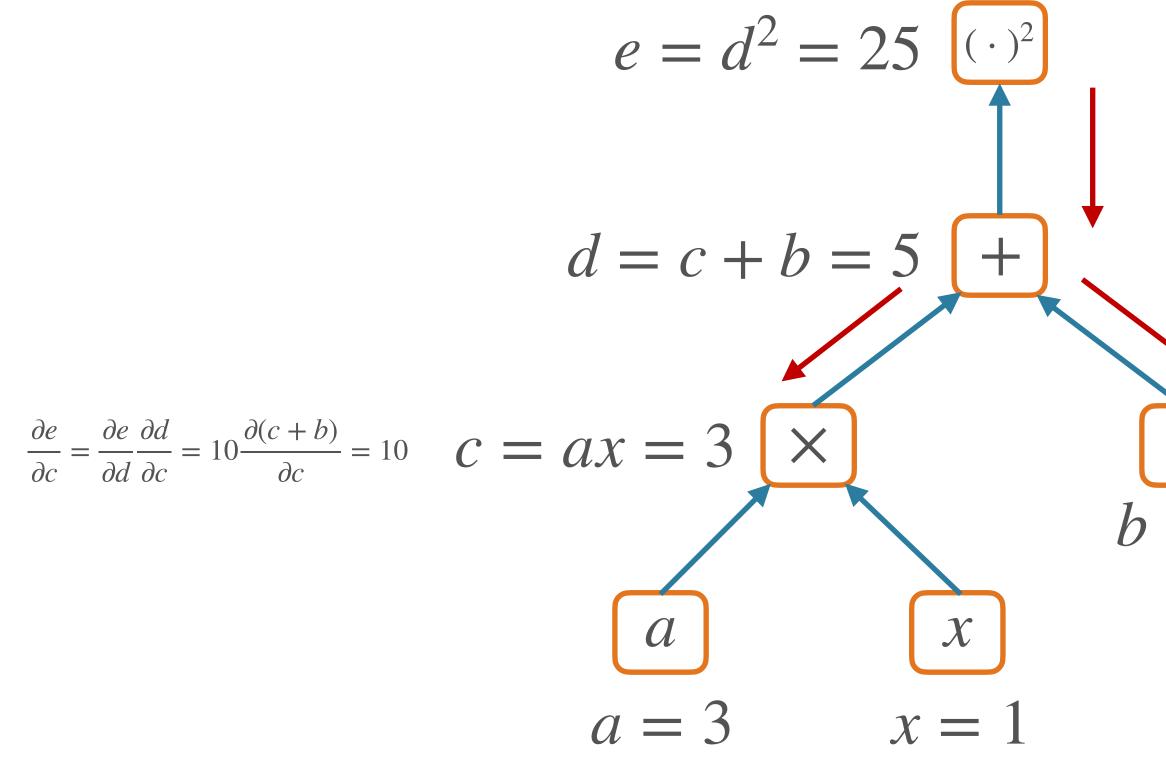
$f(x;a,b) = (ax+b)^2$

$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial b} = 10 \frac{\partial (c+b)}{\partial b} = 10$$

$$b = 2$$



$f(x; a, b) = (ax + b)^2$

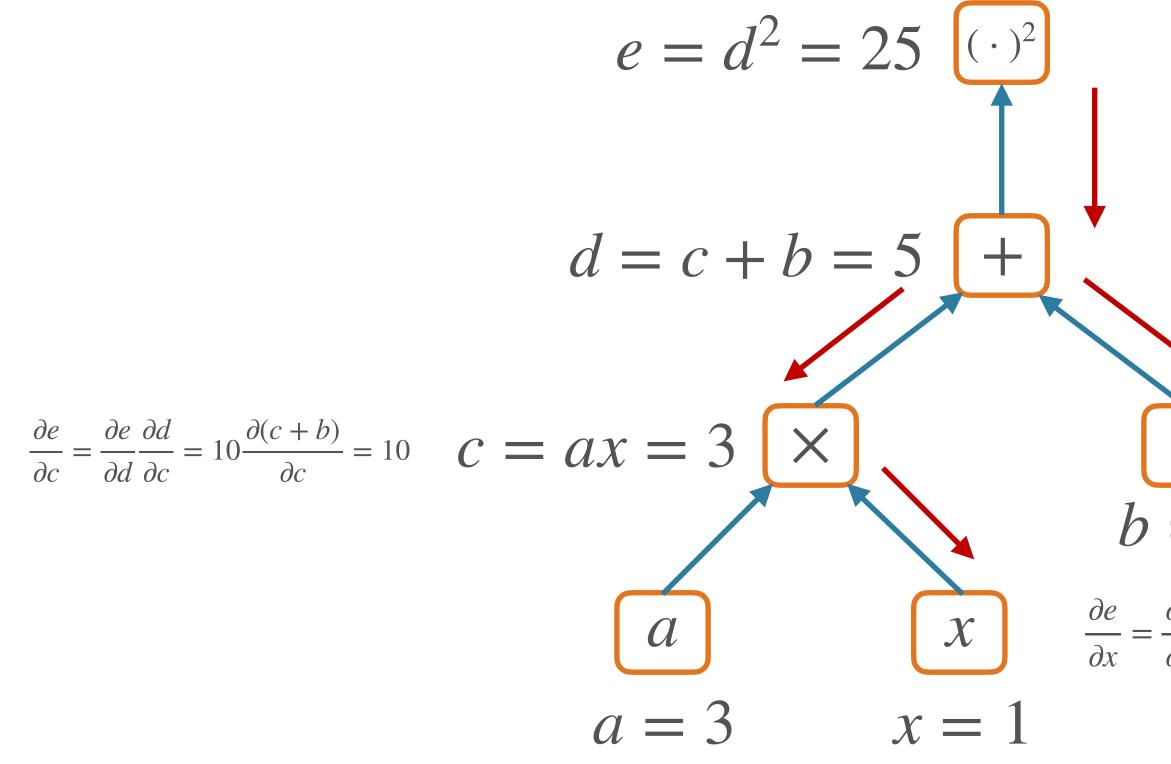
$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial b} = 10 \frac{\partial (c+b)}{\partial b} = 10$$

$$b = 2$$

f(x; a, b)



$$b) = (ax+b)^2$$

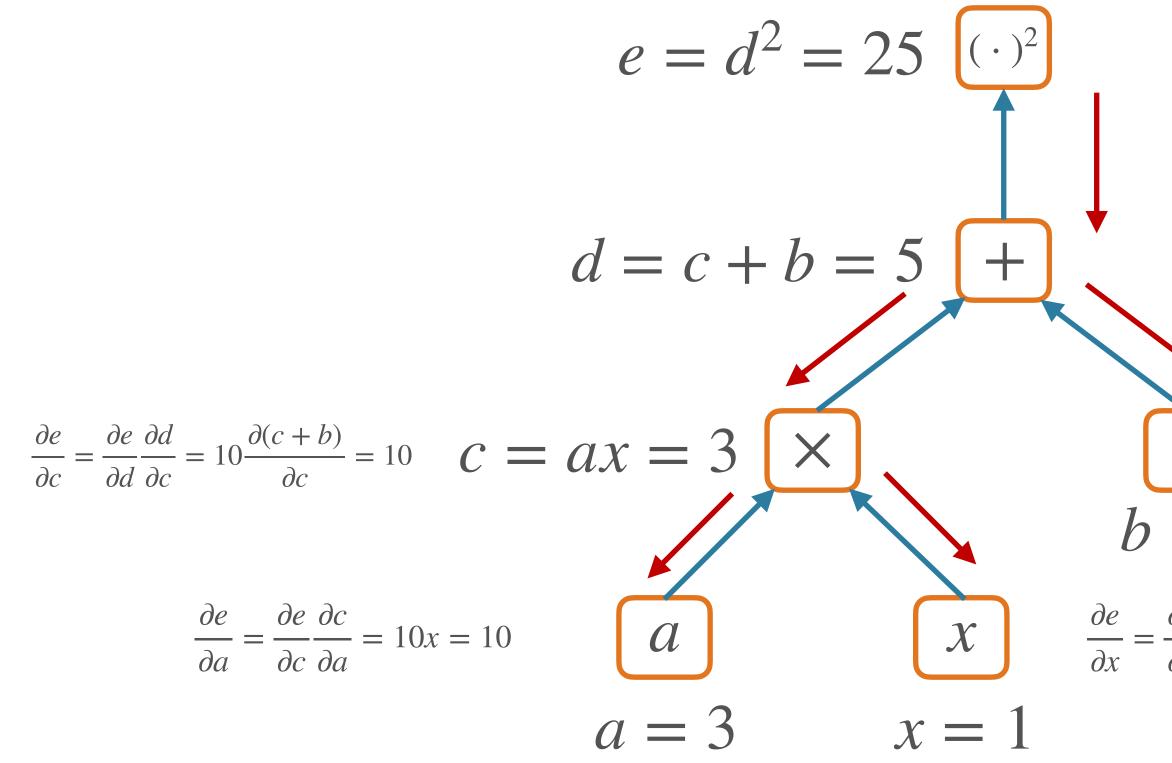
$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial b} = 10 \frac{\partial (c+b)}{\partial b} = 10$$
$$= 2$$

 $\frac{\partial e}{\partial x} = \frac{\partial e}{\partial c} \frac{\partial c}{\partial x} = 10a = 30$

f(x; a, b)



$$b) = (ax+b)^2$$

$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial b} = 10 \frac{\partial (c+b)}{\partial b} = 10$$
$$= 2$$

 $\frac{\partial e}{\partial x} = \frac{\partial e}{\partial c} \frac{\partial c}{\partial x} = 10a = 30$

Backpropagation

- Initialize gradient to 1 for given output node f
 - [NB: assuming that this output node is a *scalar*]
- Loop over nodes in graph in reversed topological order [i.e. children come before parents]
 - Compute gradient of output node w/r/t this node, in terms of gradients w/r/t this node's children
 - [i.e. apply the chain rule!]

Backpropagation Algorithm

def backward(self) -> None:

"""Run backward pass from a scalar tensor.

All Tensors in the graph above this one will wind up having their gradients stored in `grad`.

Raises:

ValueError, if this is not a scalar.

if not np.isscalar(self.value):

```
raise ValueError("Can only call backward() on scalar Tensors.")
# dL / dL = 1
```

```
self.grad = np.ones(self.value.shape)
```

NOTE: building a graph, then sorting, is not maximally efficient # but the graph can be used for visualization etc graph = self.get_graph_above() reverse_topological = reversed(list(nx.topological_sort(graph))) for tensor in reverse_topological: tensor._backward()

From Tensor class in <u>edugrad</u>

Backpropagation Algorithm

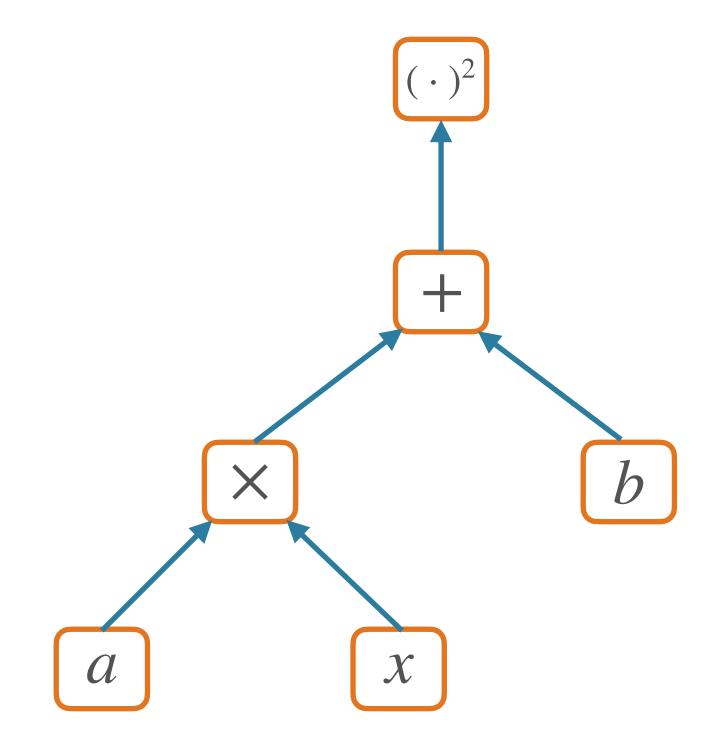
def backward(self) -> None:

"""Run backward pass from a scalar tensor.

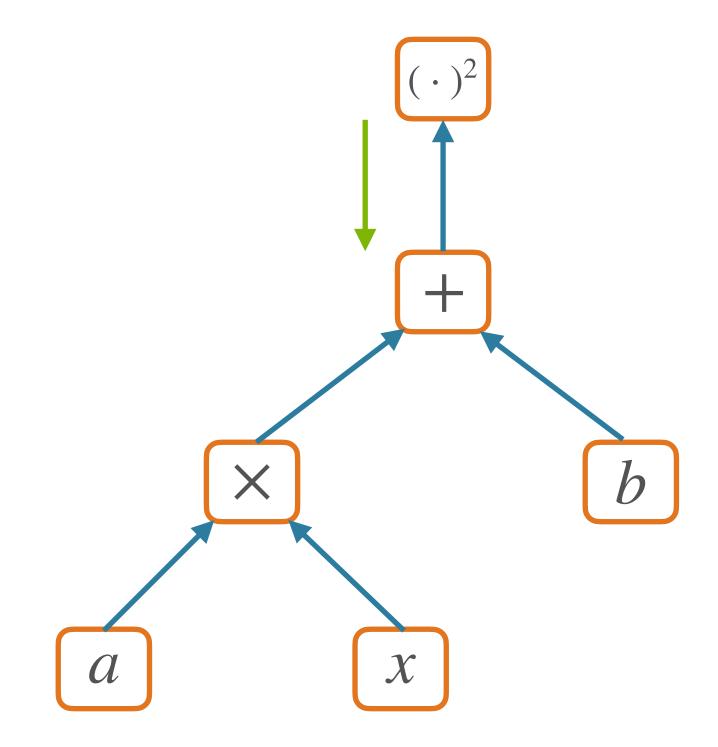
From Tensor class in <u>edugrad</u> All Tensors in the graph above this one will wind up having their gradients stored in `grad`. Raises: ValueError, if this is not a scalar. raise ValueError("Can only call backward() on scalar Tensors.") # dL / dL = 1self.grad = np.ones(self.value.shape) # NOTE: building a graph, then sorting, is not maximally efficient # but the graph can be used for visualization etc graph = self.get_graph_above() reverse_topological = reversed(list(nx.topological_sort(graph))) Local gradient + chain rule application for tensor in reverse_topological: tensor._backward() **W** UNIVERSITY of WASHINGTON

if not np.isscalar(self.value):

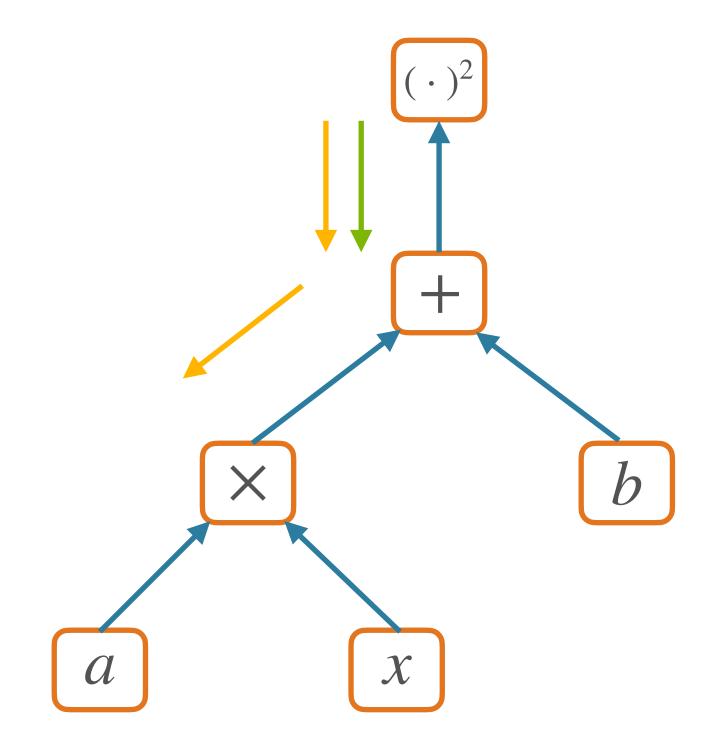
- Extremely efficient method for computing all gradients
 - Compute once
 - Store and re-use redundant computation
 - Whence a form of dynamic programming
- Traverse each edge once, instead of once per dependency path



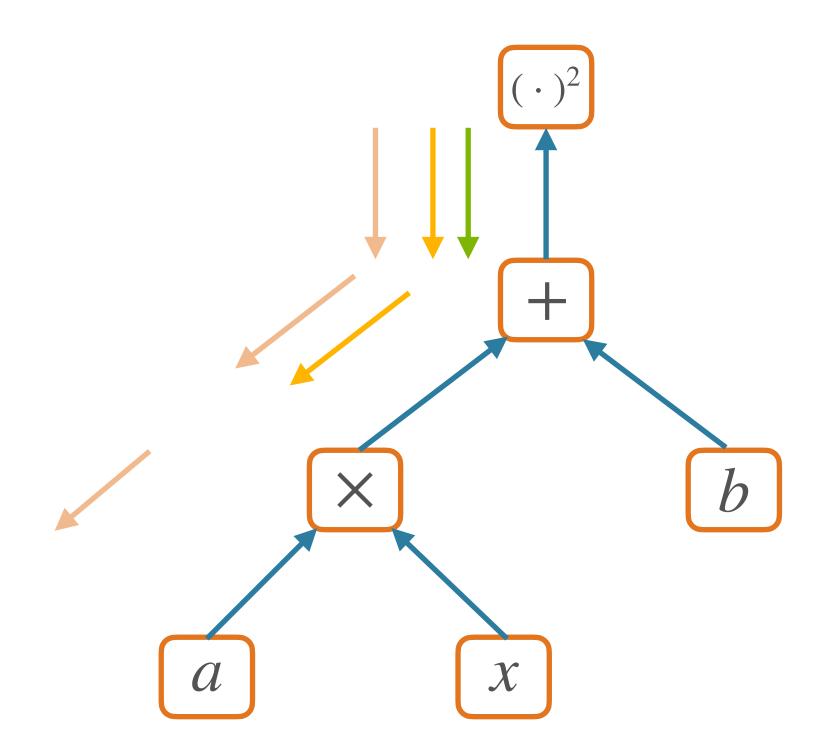
- Extremely efficient method for computing all gradients
 - Compute once
 - Store and re-use redundant computation
 - Whence a form of dynamic programming
- Traverse each edge once, instead of once per dependency path

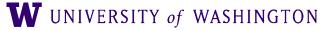


- Extremely efficient method for computing all gradients
 - Compute once
 - Store and re-use redundant computation
 - Whence a form of dynamic programming
- Traverse each edge once, instead of once per dependency path

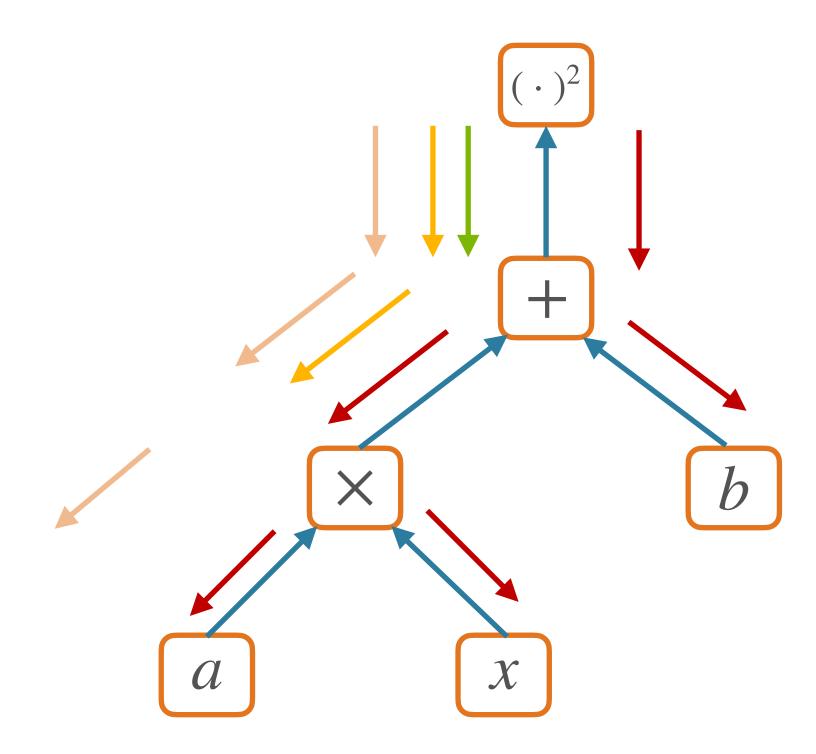


- Extremely efficient method for computing all gradients
 - Compute once
 - Store and re-use redundant computation
 - Whence a form of dynamic programming
- Traverse each edge once, instead of once per dependency path

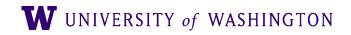




- Extremely efficient method for computing all gradients
 - Compute once
 - Store and re-use redundant computation
 - Whence a form of dynamic programming
- Traverse each edge once, instead of once per dependency path

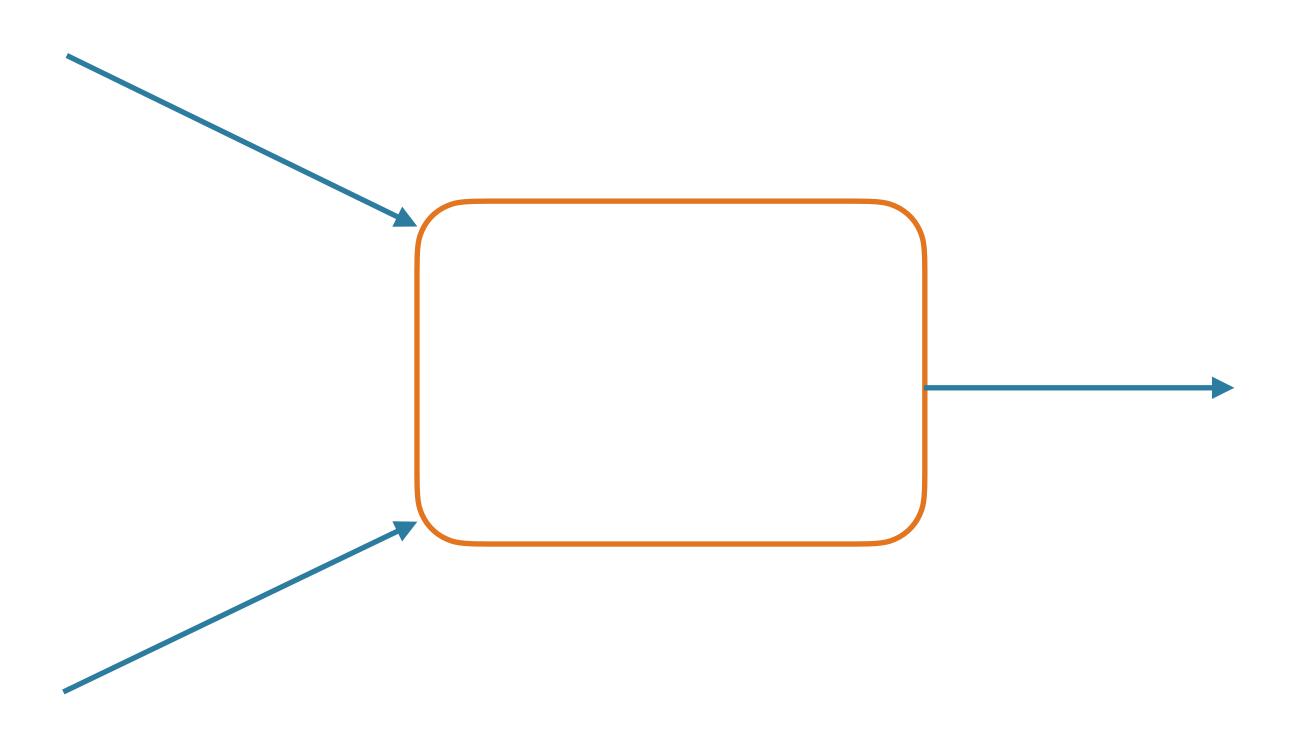


Forward/backward API

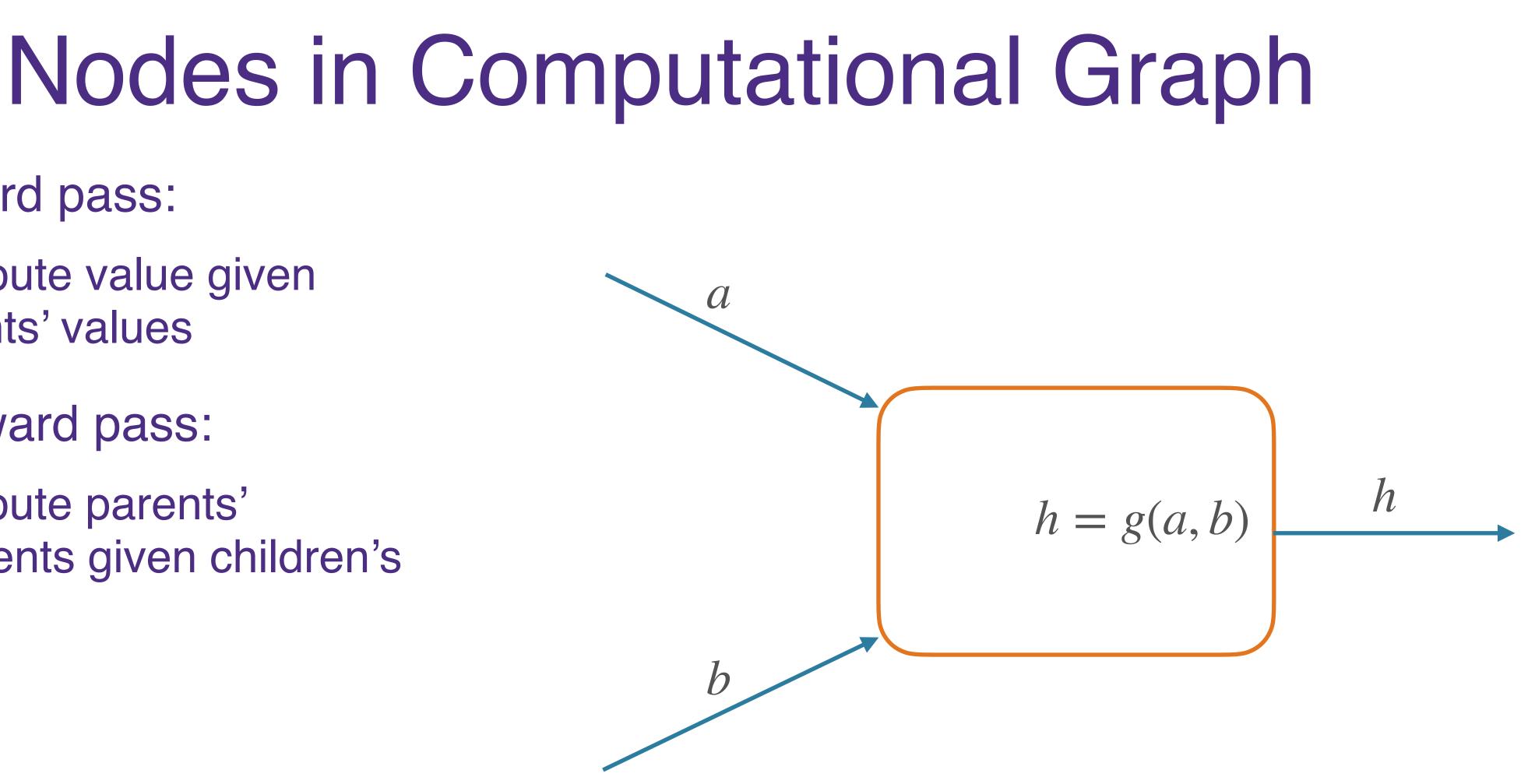


Nodes in Computational Graph

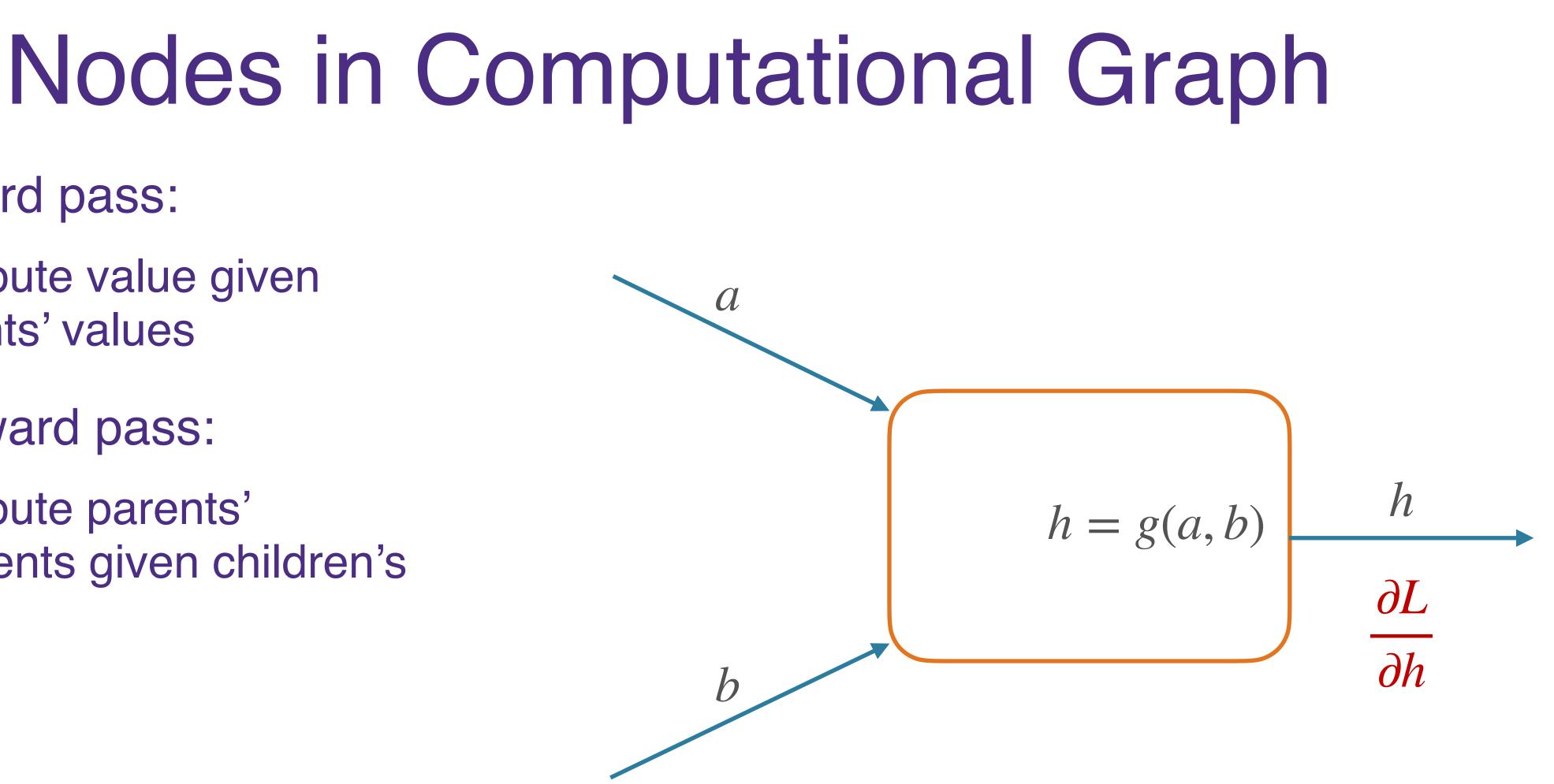
- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



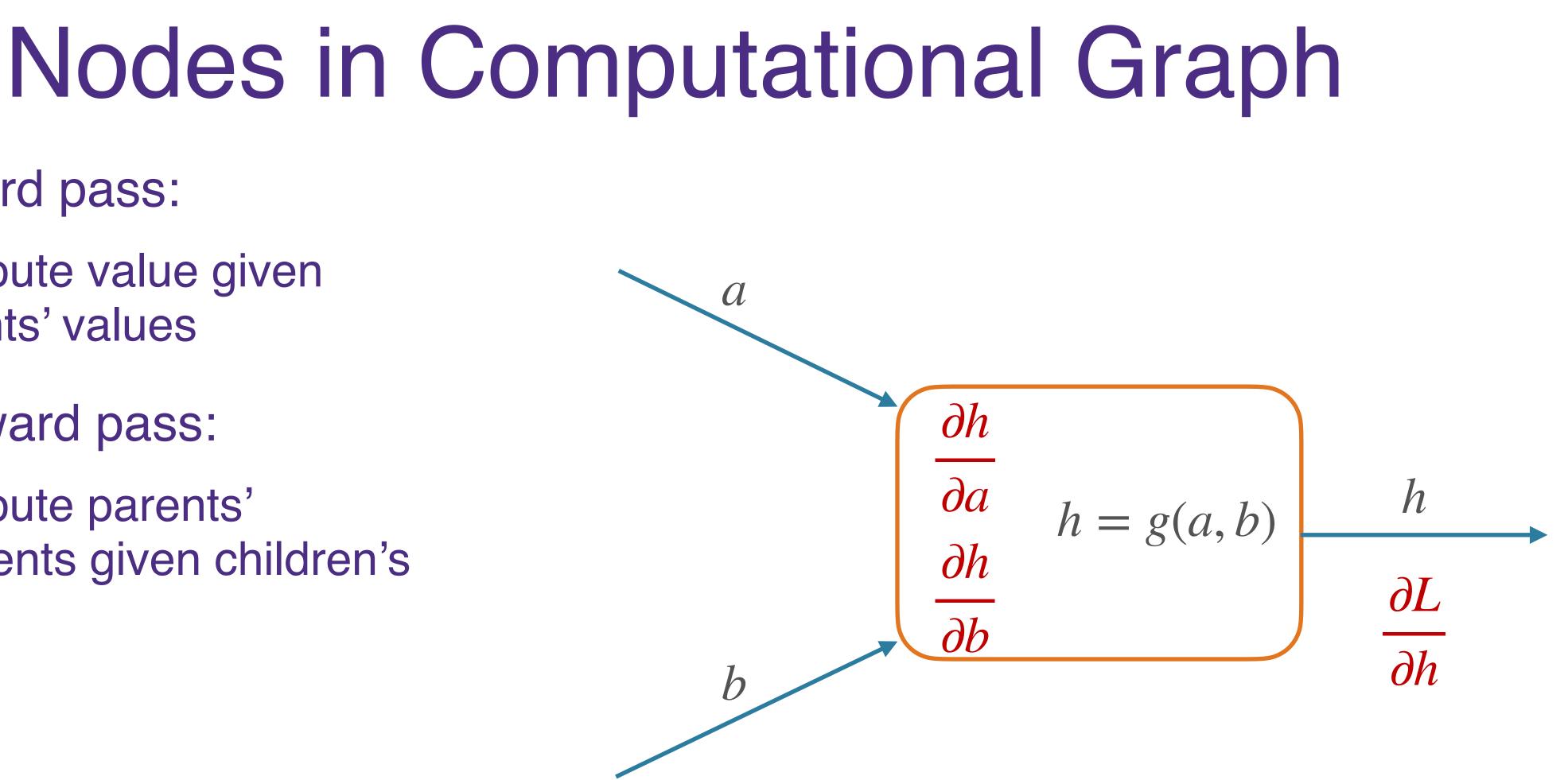
- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's

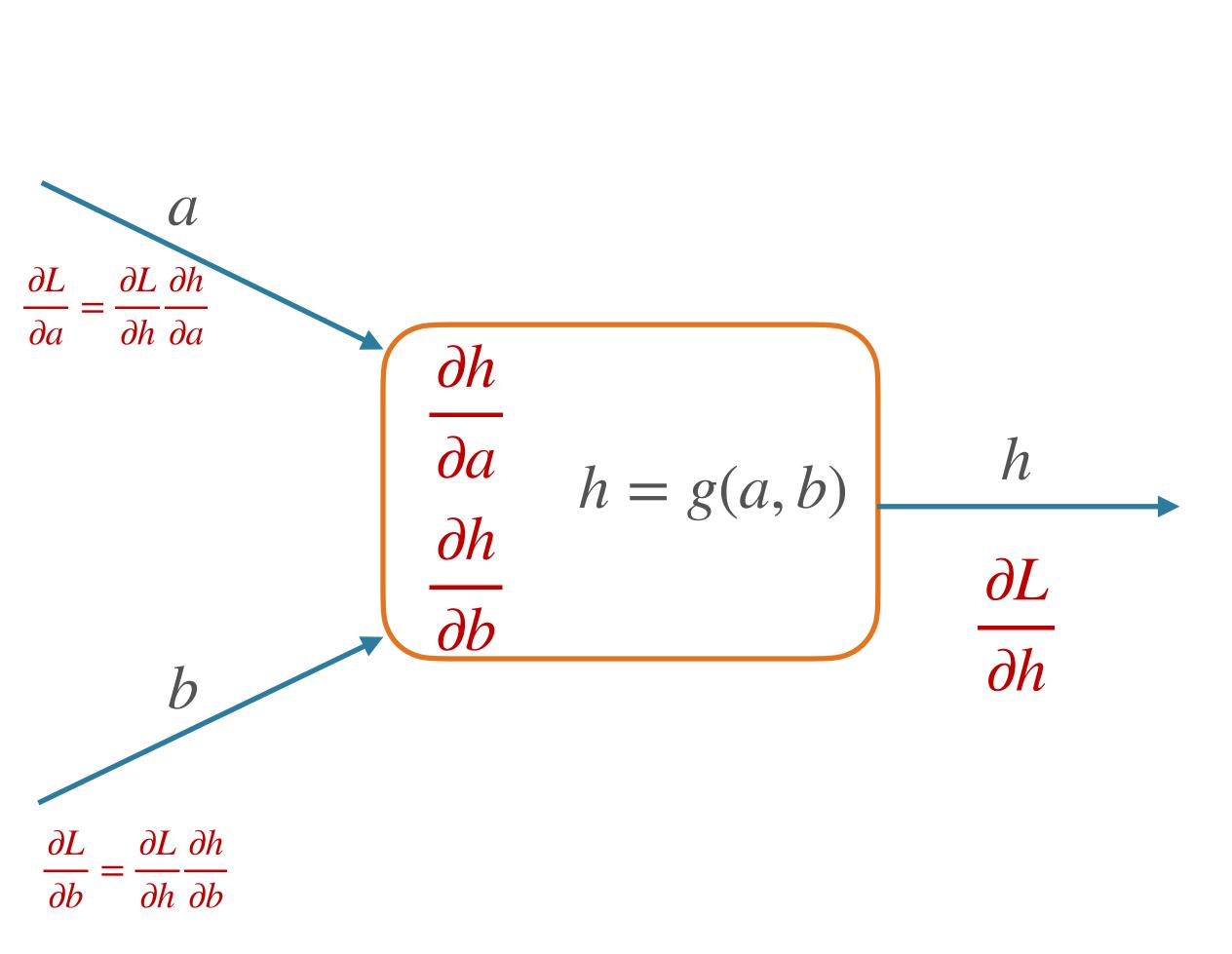


- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's

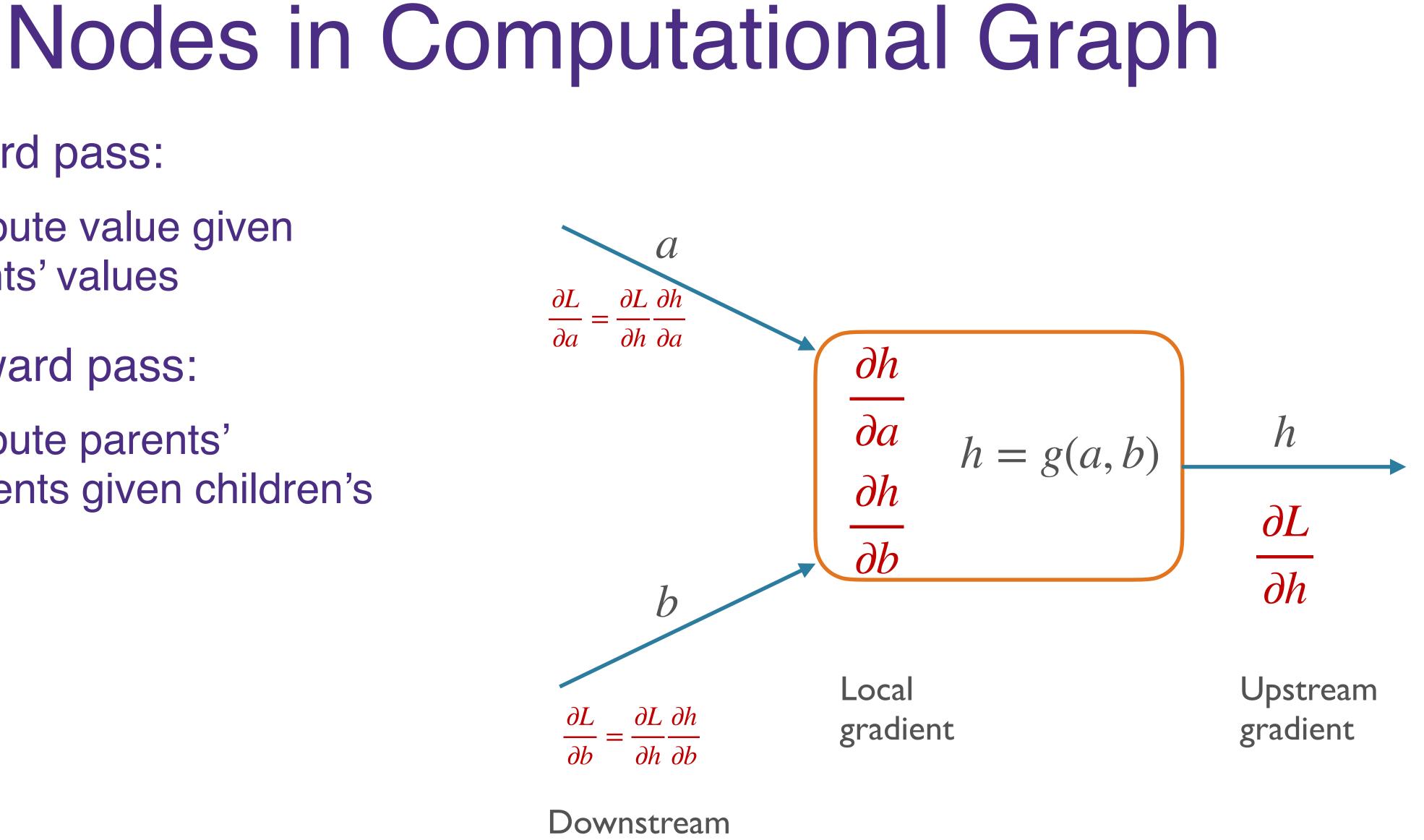


Nodes in Computational Graph

- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



gradient

Forward/Backward API

class Operation:

@staticmethod def forward(ctx: List[np.ndarray], *inputs: List[np.ndarray], **kwargs -> np.ndarray:

"""Forward pass of an operation.

Args:

ctx: empty list of arrays; can be used to store values for backward pass inputs: arguments to this operation

Returns:

output of the operation, assumed to be one numpy array

raise NotImplementedError

@staticmethod

def backward(ctx: List[np.ndarray], grad_output: np.ndarray) -> List[np.ndarray]: """Backward pass of an op, returns dL / dx for each x in parents of this op.

Args:

ctx: stored values from the forward pass grad_output: dL/dv, where v is output of this node

Returns:

a _list_ of arrays, dL/dx, for each x that was input to this op 11 11 11

raise NotImplementedError

From my <u>edugrad</u> minilibrary, which you will use :)

Example: Addition

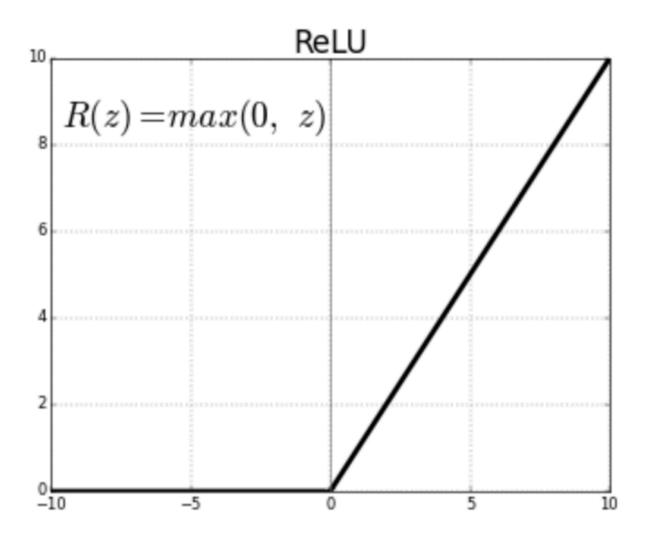
@tensor_op class add(Operation): @staticmethod def forward(ctx, a, b): return a + b @staticmethod

def backward(ctx, grad_output): return grad_output, grad_output

∂L	∂L
да	∂b

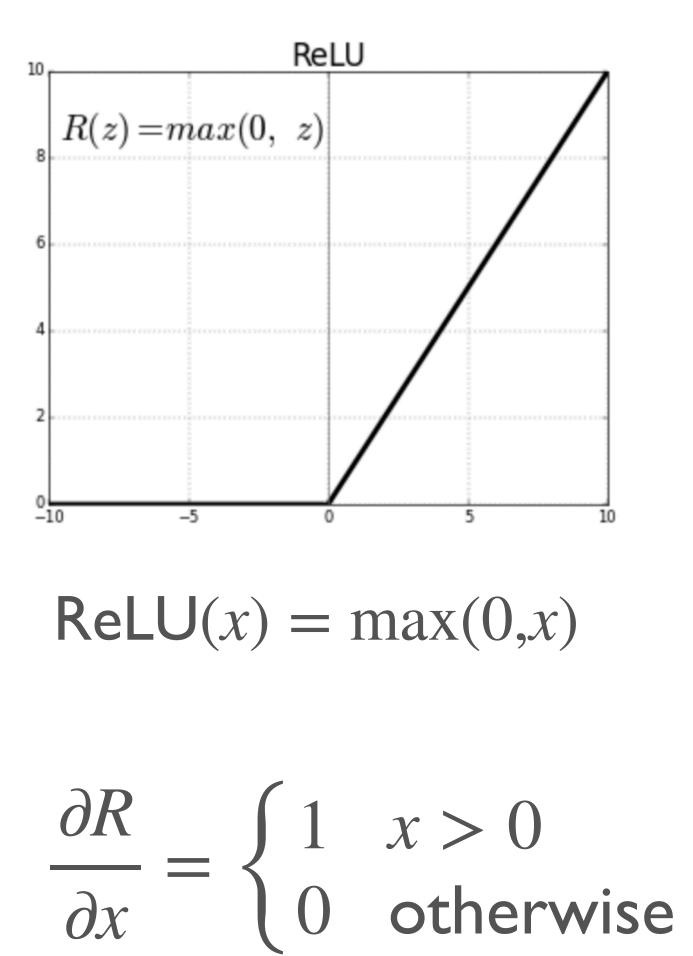
 $\text{ReLU}(x) = \max(0,x)$

class relu(Operation): def forward(ctx, x): return np.maximum(0, x)

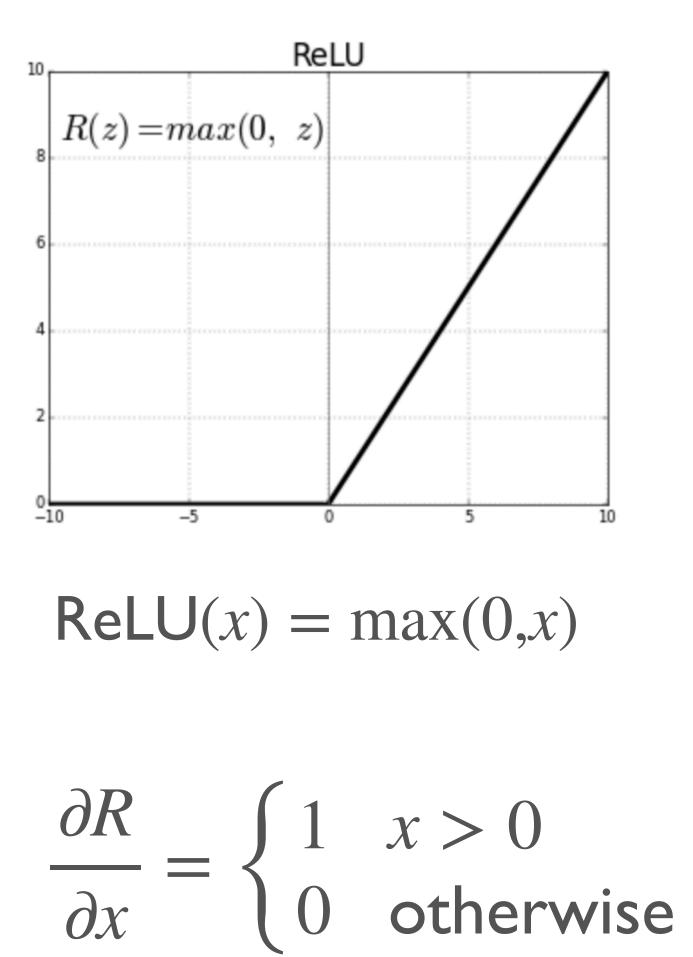


 $\text{ReLU}(x) = \max(0,x)$

class relu(Operation): def forward(ctx, x): return np.maximum(0, x)



class relu(Operation): def forward(ctx, x): return np.maximum(0, x)



class relu(Operation): def forward(ctx, x): return np.maximum(0, x)

@tensor_op class relu(Operation): @staticmethod def forward(ctx, value): new_val = np.maximum(0, value) ctx.append(new_val) return new_val

@staticmethod def backward(ctx, grad_output): value = ctx[-1]return [(value > 0).astype(float) * grad_output]

@tensor_op class relu(Operation): @staticmethod def forward(ctx, value): new_val = np.maximum(0, value) ctx.append(new_val) return new_val

@staticmethod def backward(ctx, grad_output): value = ctx[-1]return [(value > 0).astype(float) * grad_output]

Save and retrieve the input value!

@tensor_op class relu(Operation): @staticmethod def forward(ctx, value): new_val = np.maximum(0, value) ctx.append(new_val) return new_val

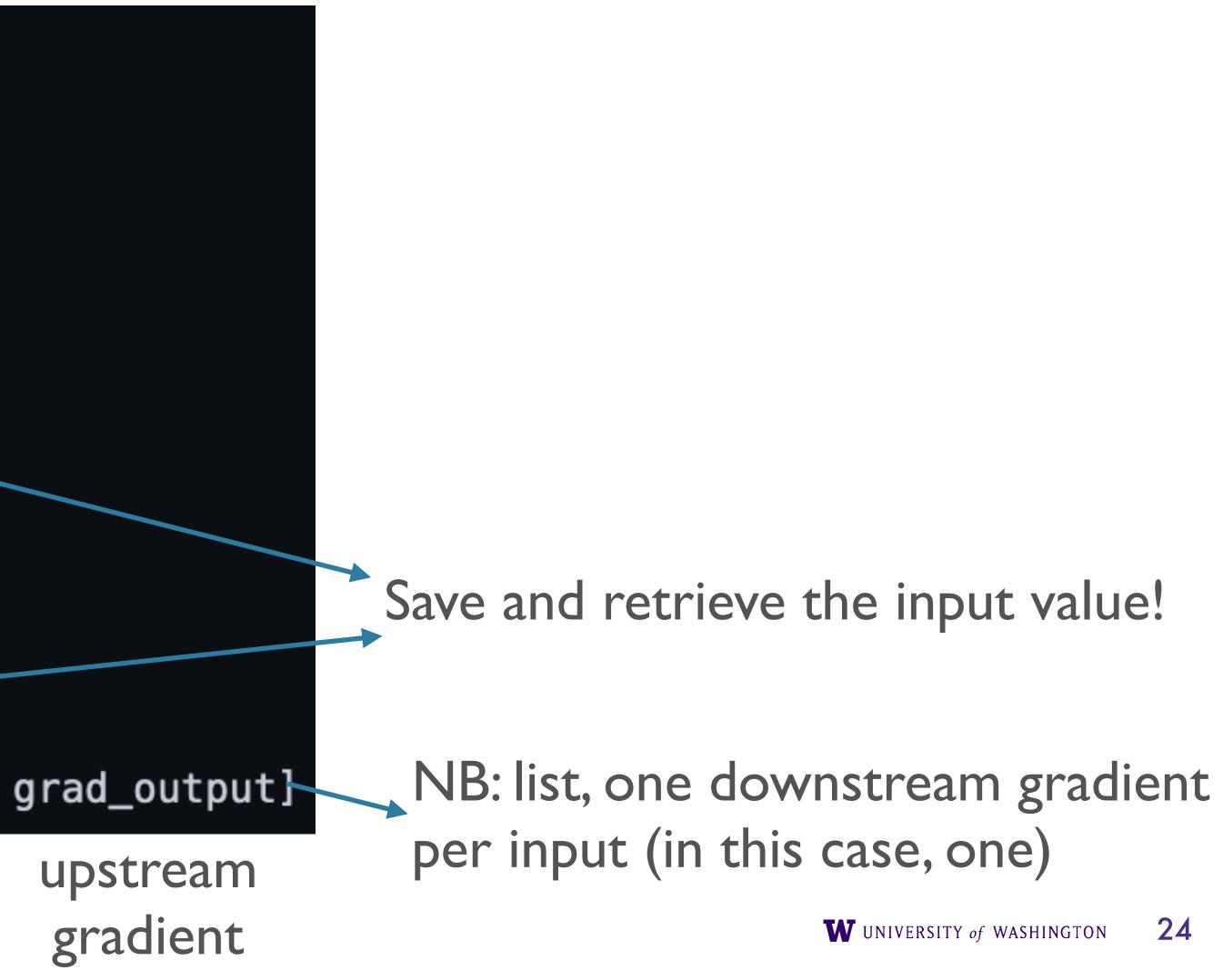
@staticmethod def backward(ctx, grad_output): value = ctx[-1]return [(value > 0).astype(float) * grad_output] local gradient times

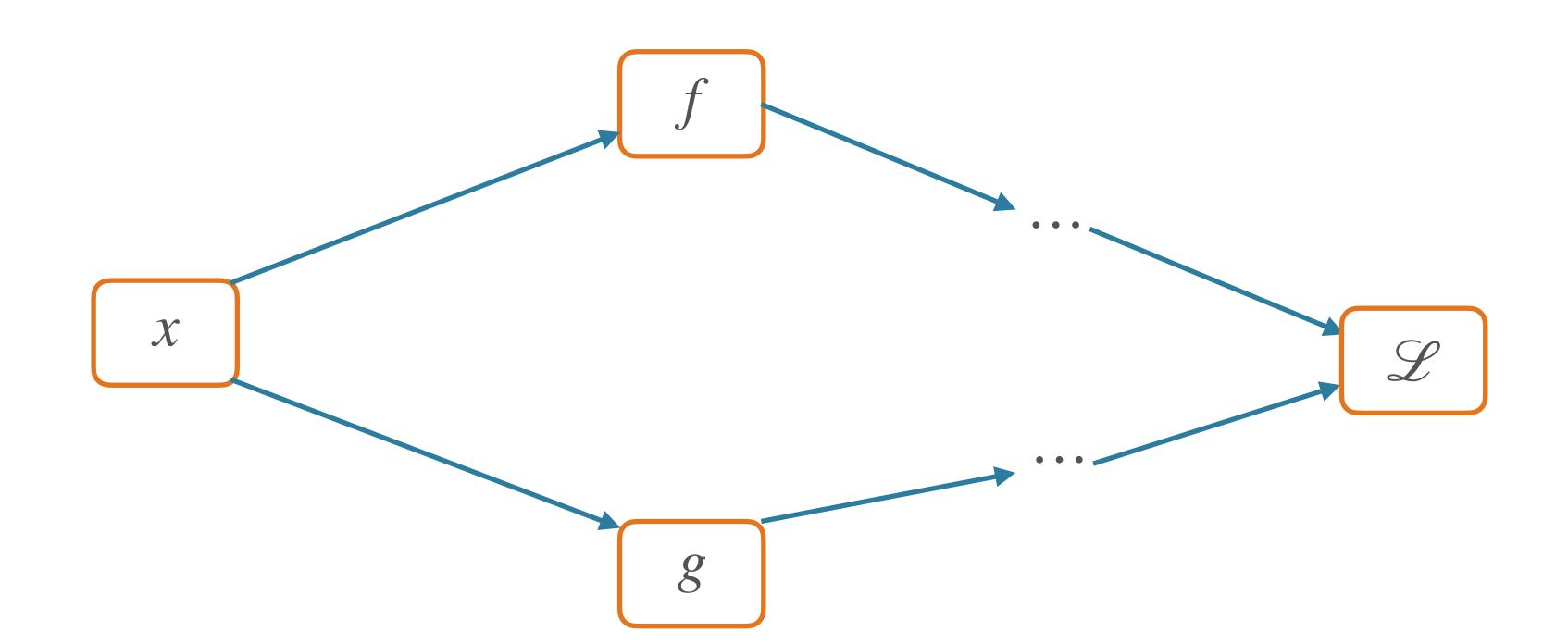
Save and retrieve the input value!

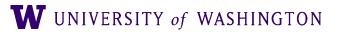
upstream gradient

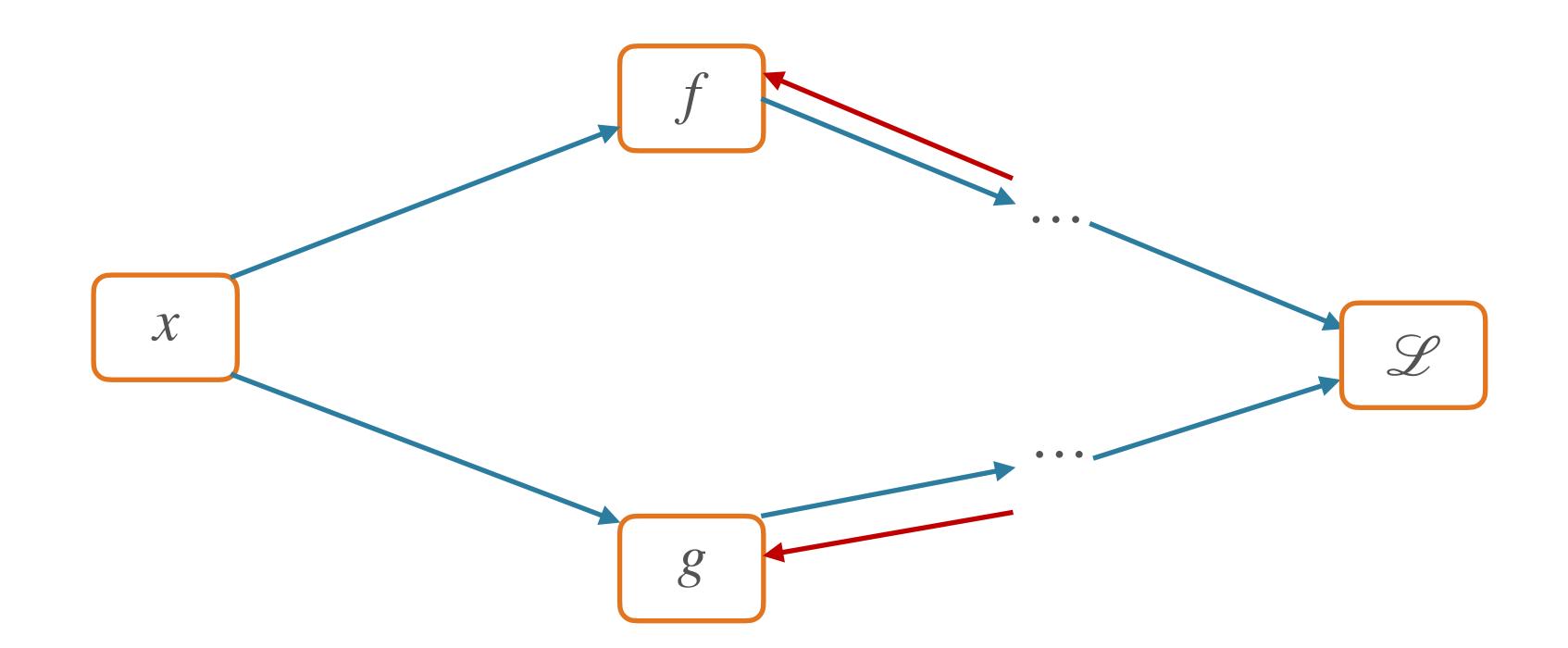
@tensor_op
class relu(Operation):
 @staticmethod
 def forward(ctx, value):
 new_val = np.maximum(0, value)
 ctx.append(new_val)
 return new_val

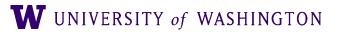
@staticmethod
def backward(ctx, grad_output):
 value = ctx[-1]
 return [(value > 0).astype(float) * grad_output]
 local gradient times upstream

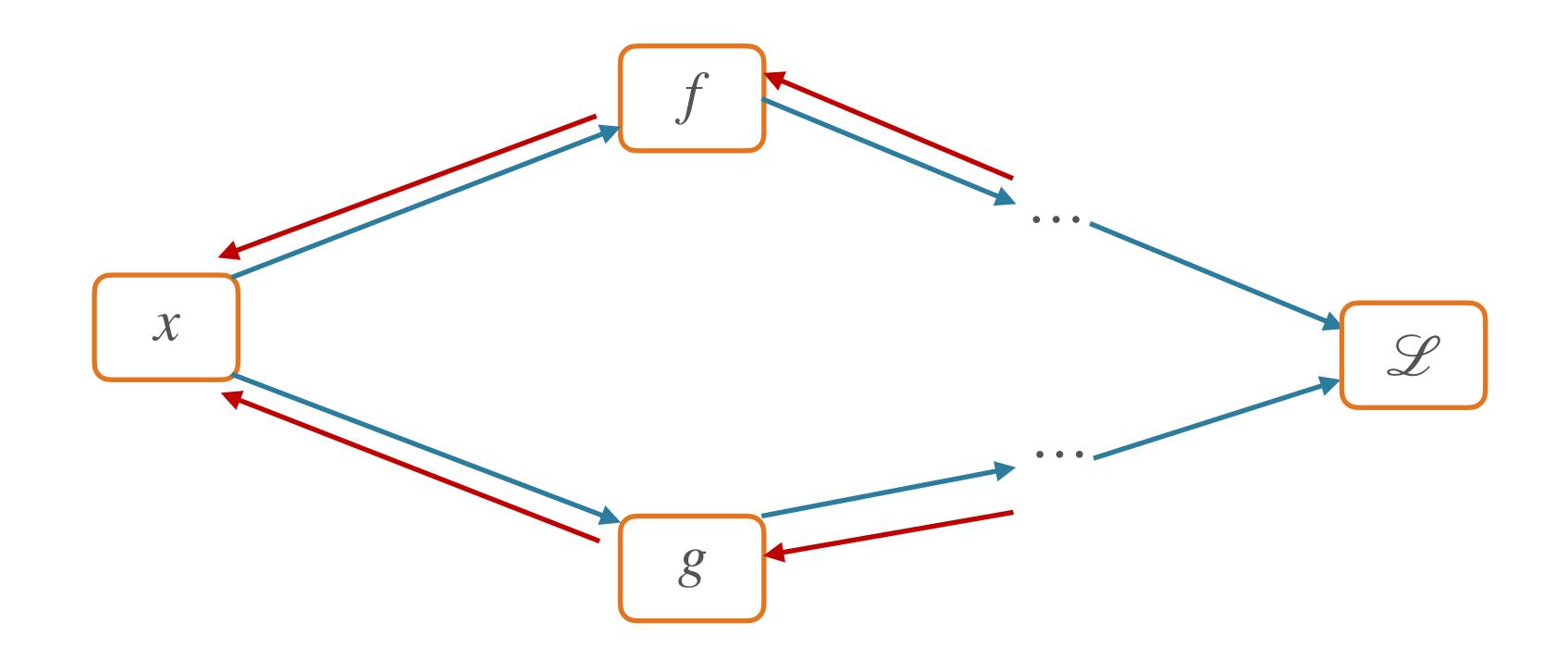


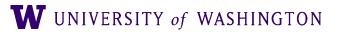


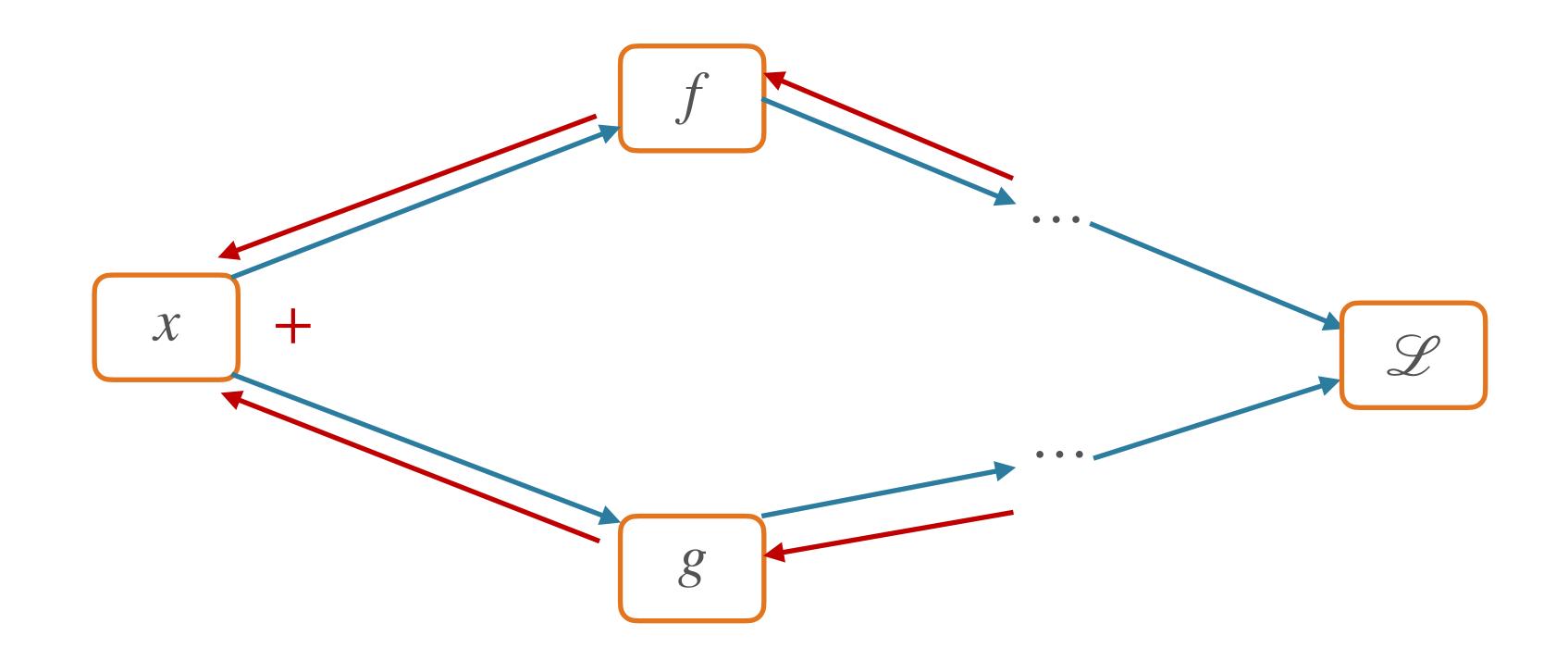


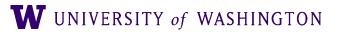


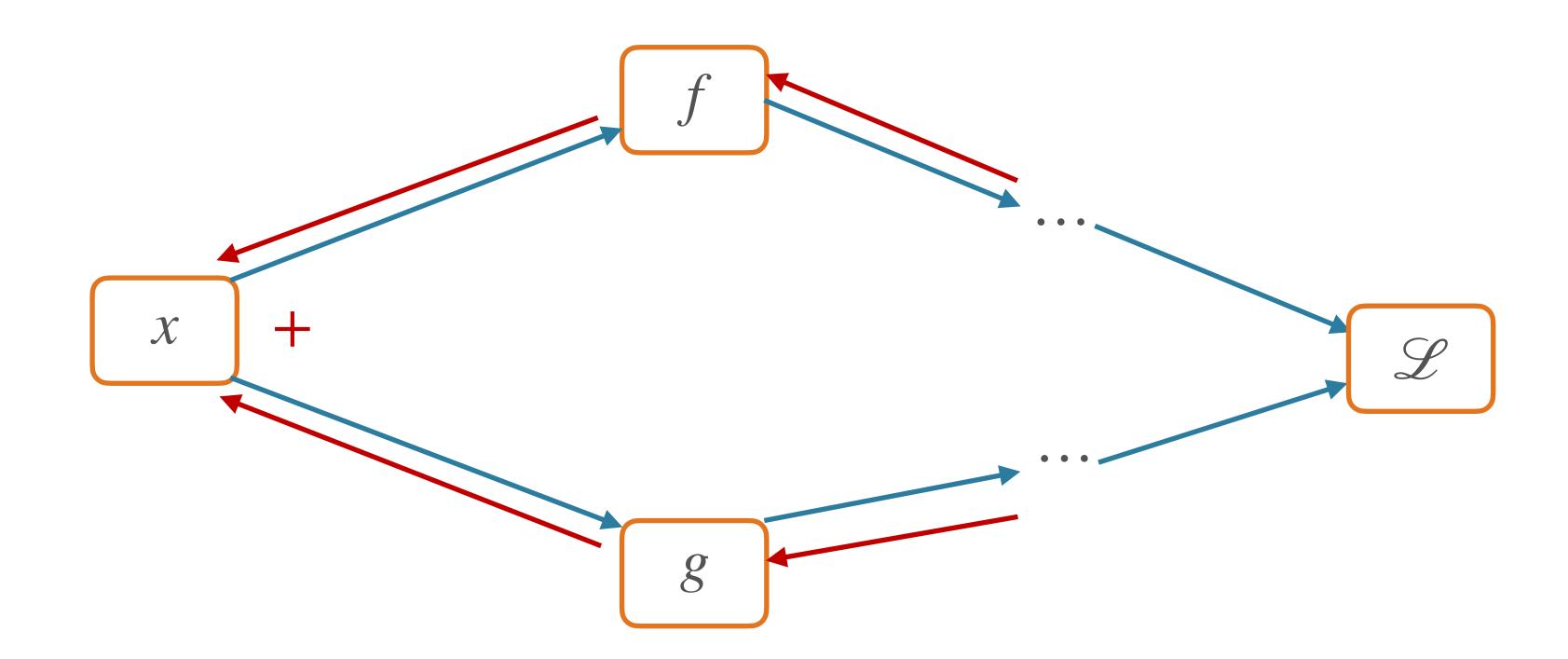






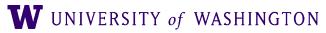




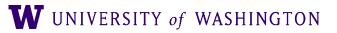


Multivariable chain rule:

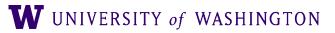
 $\frac{\partial \mathscr{L}}{\partial x} = \frac{\partial \mathscr{L}}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial \mathscr{L}}{\partial g} \frac{\partial g}{\partial x}$



 $f(x) = x^2 \times 3x$ Live demo and/or exercise!

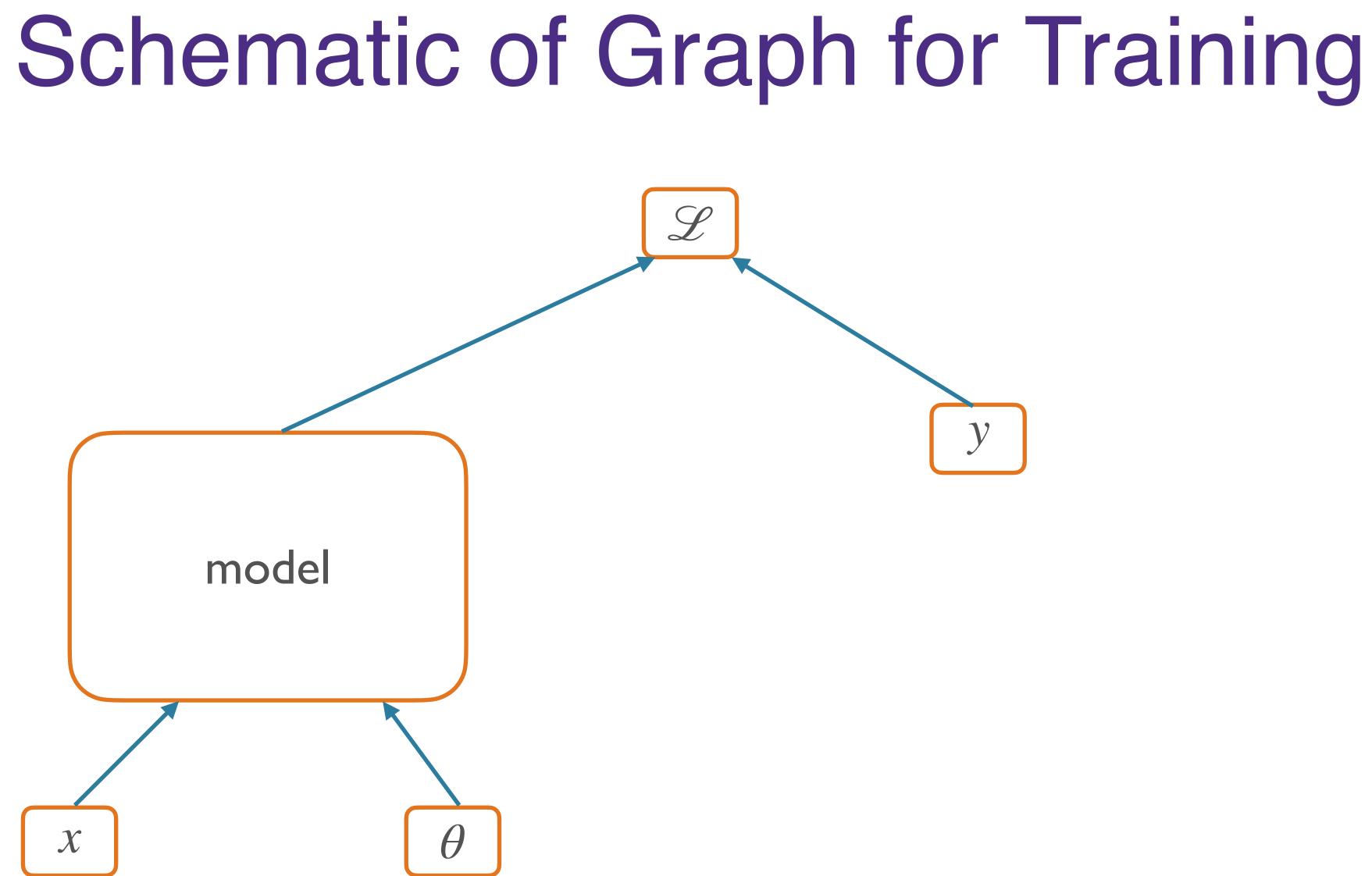


def _backward(): grads = op.backward(ctx, new_tensor.grad) for idx in range(len(inputs)): inputs[idx].grad += grads[idx]



def _backward(): grads = op.backward(ctx, new_tensor.grad) for idx in range(len(inputs)): inputs[idx].grad += grads[idx]

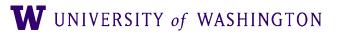
Adding over paths handled implicitly in auto-grad libraries; more power to the forward/backward API



Two Modes of Graph Construction

- Static (e.g. TensorFlow <2.x)
 - First: define entire graph structure
 - Then: pass in inputs, execute nodes
 - [session.run, feed_dicts, oh my!]
- Dynamic (e.g. PyTorch, TensorFlow 2.x)
 - The graph is defined *dynamically* in the forward pass
 - E.g. operators on Tensors store the links to their input Tensors, thus building a graph

• Define (now, dynamically) computation graph, get backprop "automatically"



• Define (now, dynamically) computation graph, get backprop "automatically"

for epoch in range(2): # loop over the dataset multiple times

running_loss = 0.0**for** i, data **in** enumerate(trainloader, 0): inputs, labels = data

zero the parameter gradients optimizer.zero_grad()

forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()

```
# get the inputs; data is a list of [inputs, labels]
```


Define (now, dynamically) computation graph, get backprop "automatically"

for epoch in range(2): # loop over the dataset multiple times

running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data

> *# zero the parameter gradients* optimizer.zero_grad()

forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()

Backprop the loss!

```
# get the inputs; data is a list of [inputs, labels]
```


Define (now, dynamically) computation graph, get backprop "automatically"

for epoch in range(2): # loop over the dataset multiple times

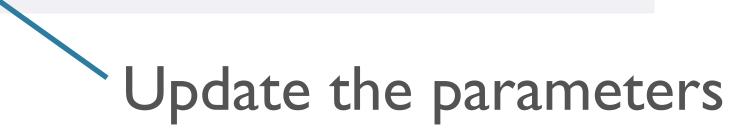
running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data

> *# zero the parameter gradients* optimizer.zero_grad()

forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()

Backprop the loss!

```
# get the inputs; data is a list of [inputs, labels]
```



Define (now, dynamically) computation graph, get backprop "automatically"

for epoch in range(2): # loop over the dataset multiple times

running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data

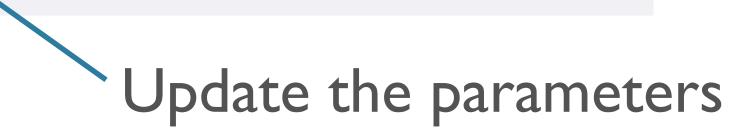
> *# zero the parameter gradients* optimizer.zero_grad()

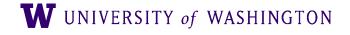
forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()

Backprop the loss!

```
# get the inputs; data is a list of [inputs, labels]
```

Yes, you should <u>understand backdrop!</u>





More Resources

- Debugging:
 - Symbolic gradient computation; f(x + h) f(x h)/2h
 - Shapes! Gradients should be same shape as values [b/c scalar outputs]
- Computing vector/matrix derivatives
 - Work with small toy examples, compute for a single element, generalize
 - <u>https://web.archive.org/web/20240324092041/http://cs231n.stanford.edu/</u> <u>vecDerivs.pdf</u>
 - http://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf

Next Time

- Feed-forward models for:
 - Classification: Deep Averaging Network
 - Language Modeling
- Training tips and tricks

