Gradient Descent; Word Vectors

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld

Announcements

- Office hours:
- Shane:
- Wed 3-5PM
- GUG 415K + https://washington.zoom.us/my/shanest
- Saiya:
- Tuesday 3:30-5:30PM
- GUG 407 + https://washington.zoom.us/s/92010041700
- HW1 now due April 6 (as opposed to April 4), i.e. free late submission
- Dropbox folder for the course on patas is delayed
- Sign up for patas account ASAP if you have not done so already: list " 575 " as course

Today's Plan

- Terminology / Notation
- Gradient Descent
- Word Vectors, intro
- Homework 1

Basic Terminology / Notation

Supervised Learning

Supervised Learning

- Given: a dataset $\mathscr{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- $x_{i} \in X$: input for i -th example
- $y_{i} \in Y$: output for i i-th example

Supervised Learning

- Given: a dataset $\mathscr{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- $x_{i} \in X$: input for i-th example
- $y_{i} \in Y$: output for i -th example
- For example:
- Sentiment analysis:
- Input: bag of words representation of "This movie was great."
- Output: 4 [on a scale 1-5]
- Language modeling:
- Input: "This movie was"
- Output: "great"

Supervised Learning

Supervised Learning

- Given: a dataset $\mathscr{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- $x_{i} \in X$: input for i-th example
- $y_{i} \in Y$: output for i-th example

Supervised Learning

- Given: a dataset $\mathscr{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- $x_{i} \in X$: input for i-th example
- $y_{i} \in Y$: output for i-th example
- Goal: learn a function $f: X \rightarrow Y$ which:
- "Does well" on the given data \mathscr{D}
- Generalizes well to unseen data

Parameterized Functions

- A learning algorithm searches for a function f amongst a space of possible functions
- Parameters define a family of functions
- θ : general symbol for parameters
- $\hat{y}=f(x ; \theta)$: input x , parameters θ; modelfunction output \hat{y}
- Example: the family of linear functions $f(x)=m x+b$
- $\theta=\{m, b\}$
- Later: neural network architecture defines the family of functions

Loss Minimization

- General form of optimization problem
- $\mathscr{L}(\hat{Y}, Y)$: loss function ("objective function"); $\mathscr{L}(\hat{Y}, Y)=\frac{1}{|Y|} \sum_{i} \ell\left(\hat{y}\left(x_{i}\right), y_{i}\right)$
- How "close" are the model's outputs to the true outputs
- $\ell(\hat{y}, y)$: local (per-instance) loss, averaged over training instances
- More later: depends on the particular task, among other things
- View the loss as a function of the model's parameters

$$
\mathscr{L}(\theta):=\mathscr{L}(\hat{Y}, Y)=\mathscr{L}(f(X ; \theta), Y)
$$

Loss Minimization

- The optimization problem:

$$
\theta^{*}=\arg \min \mathscr{L}(\theta)
$$

- Example: (least-squares) linear regression
- $\ell(\hat{y}, y)=(\hat{y}-y)^{2}$

$$
m^{*}, b^{*}=\arg \min _{m, b} \sum_{i}\left(\left(m x_{i}+b\right)-y_{i}\right)^{2}
$$

Learning: (Stochastic) Gradient Descent

Gradient Descent: Basic Idea

Gradient Descent: Basic Idea

Gradient Descent: Basic Idea

- The gradient of the loss w/r/t parameters tells which direction in parameter space to "walk" to make the loss smaller (i.e. to improve model outputs)
- Guaranteed to work in linear model case
- Can get stuck in local minima for non-linear functions, like NNs
- [More precisely: if loss is a convex function of the parameters, gradient descent is guaranteed to find an optimal solution. For non-linear functions, the loss will generally not be convex.]

Derivatives

- The derivative of a function of one real variable measures how much the output changes with respect to a change in the input variable

Derivatives

- The derivative of a function of one real variable measures how much the output changes with respect to a change in the input variable

$$
\begin{aligned}
f(x) & =x^{2}+35 x+12 \\
\frac{d f}{d x} & =2 x+35
\end{aligned}
$$

Derivatives

- The derivative of a function of one real variable measures how much the output changes with respect to a change in the input variable

$$
\begin{aligned}
f(x) & =x^{2}+35 x+12 \\
\frac{d f}{d x} & =2 x+35 \\
f(x) & =e^{x} \\
\frac{d f}{d x} & =e^{x}
\end{aligned}
$$

Partial Derivatives

- A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

Partial Derivatives

- A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

$$
f(x, y)=10 x^{3} y^{2}+5 x y^{3}+4 x+y
$$

Partial Derivatives

- A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

$$
\begin{aligned}
f(x, y) & =10 x^{3} y^{2}+5 x y^{3}+4 x+y \\
\frac{\partial f}{\partial x} & =30 x^{2} y^{2}+5 y^{3}+4
\end{aligned}
$$

Partial Derivatives

- A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

$$
\begin{aligned}
f(x, y) & =10 x^{3} y^{2}+5 x y^{3}+4 x+y \\
\frac{\partial f}{\partial x} & =30 x^{2} y^{2}+5 y^{3}+4 \\
\frac{\partial f}{\partial y} & =20 x^{3} y+15 x y^{2}+1
\end{aligned}
$$

Gradient

Gradient

- The gradient of a function $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is a vector function, returning all of the partial derivatives

Gradient

- The gradient of a function $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is a vector function, returning all of the partial derivatives

$$
\nabla f=\left\langle\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle
$$

Gradient

- The gradient of a function $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is a vector function, returning all of the partial derivatives

$$
\begin{aligned}
\nabla f & =\left\langle\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle \\
f(x, y) & =4 x^{2}+y^{2} \\
\nabla f & =\langle 8 x, 2 y\rangle
\end{aligned}
$$

Gradient

- The gradient of a function $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is a vector function, returning all of the partial derivatives

$$
\begin{aligned}
\nabla f & =\left\langle\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle \\
f(x, y) & =4 x^{2}+y^{2} \\
\nabla f & =\langle 8 x, 2 y\rangle
\end{aligned}
$$

- The gradient is perpendicular to the level curve at a point

Gradient

- The gradient of a function $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is a vector function, returning all of the partial derivatives

$$
\begin{aligned}
\nabla f & =\left\langle\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle \\
f(x, y) & =4 x^{2}+y^{2} \\
\nabla f & =\langle 8 x, 2 y\rangle
\end{aligned}
$$

- The gradient is perpendicular to the level curve at a point
- The gradient points in the direction of greatest rate of increase of f

Gradient and Level Curves

Level curves: $f(x, y)=c$

Gradient and Level Curves

$$
\begin{aligned}
f(x, y) & =4 x^{2}+y^{2} \\
\nabla f & =\langle 8 x, 2 y\rangle
\end{aligned}
$$

Level curves: $f(x, y)=c$

Gradient and Level Curves

$$
\begin{aligned}
f(x, y) & =4 x^{2}+y^{2} \\
\nabla f & =\langle 8 x, 2 y\rangle
\end{aligned}
$$

Level curves: $f(x, y)=c$

Gradient and Level Curves

$$
\begin{aligned}
f(x, y) & =4 x^{2}+y^{2} \\
\nabla f & =\langle 8 x, 2 y\rangle
\end{aligned}
$$

Level curves: $f(x, y)=c$

Q: what are the actual gradients at those points?

Gradient Descent and Level Curves

Gradient Descent Algorithm

- Initialize θ_{0}
- Repeat until convergence:

$$
\theta_{n+1}=\theta_{n}-\alpha \nabla \mathscr{L}\left(\hat{Y}\left(\theta_{n}\right), Y\right)
$$

Gradient Descent Algorithm

- Initialize θ_{0}
- Repeat until convergence:

$$
\theta_{n+1}=\theta_{n}-\alpha \nabla \mathscr{L}\left(\hat{Y}\left(\theta_{n}\right), Y\right)
$$

Gradient Descent Algorithm

- Initialize θ_{0}
- Repeat until convergence:

$$
\theta_{n+1}=\theta_{n}-\alpha \nabla \mathscr{L}\left(\hat{Y}\left(\theta_{n}\right), Y\right)
$$

- High learning rate: big steps, may bounce and "overshoot" the target
- Low learning rate: small steps, smoother minimization of loss, but can be slow

Gradient Descent: Minimal Example

- Task: predict a target/true value $y=2$
- "Model": $\hat{y}(\theta)=\theta$
- A single parameter: the actual guess
- Loss: Euclidean distance

$$
\mathscr{L}(\hat{y}(\theta), y)=(\hat{y}-y)^{2}=(\theta-y)^{2}
$$

Gradient Descent: Minimal Example

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \mathcal{L}(\theta, y) & =2(\theta-y) \\
\theta_{t+1} & =\theta_{t}-\alpha \cdot \frac{\partial}{\partial \theta} \mathcal{L}(\theta, y)
\end{aligned}
$$

Stochastic Gradient Descent

Stochastic Gradient Descent

- The above is called "batch" gradient descent
- Updates once per pass through the dataset
- Expensive, and slow; does not scale well

Stochastic Gradient Descent

- The above is called "batch" gradient descent
- Updates once per pass through the dataset
- Expensive, and slow; does not scale well
- Stochastic gradient descent: single example at a time; very noisy estimate of true gradient

Stochastic Gradient Descent

- The above is called "batch" gradient descent
- Updates once per pass through the dataset
- Expensive, and slow; does not scale well
- Stochastic gradient descent: single example at a time; very noisy estimate of true gradient
- Mini-batch gradient descent:
- Break the data into "mini-batches": small chunks of the data
- Compute gradients and update parameters for each batch
- Mini-batch of size 1 = single example = stochastic gradient descent
- A noisy estimate of the true gradient, but works well in practice; more parameter updates

Stochastic Gradient Descent

- The above is called "batch" gradient descent
- Updates once per pass through the dataset
- Expensive, and slow; does not scale well
- Stochastic gradient descent: single example at a time; very noisy estimate of true gradient
- Mini-batch gradient descent:
- Break the data into "mini-batches": small chunks of the data
- Compute gradients and update parameters for each batch
- Mini-batch of size 1 = single example = stochastic gradient descent
- A noisy estimate of the true gradient, but works well in practice; more parameter updates
- Epoch: one pass through the whole training data

Stochastic Gradient Descent

```
initialize parameters / build model
for each epoch:
```

```
data = shuffle(data)
```

data = shuffle(data)
batches = make_batches(data)
batches = make_batches(data)
for each batch in batches:
outputs = model(batch)
loss = loss_fn(outputs, true_outputs)
compute gradients
update parameters

```

\section*{Word Vectors, Intro}

\section*{Distributional Similarity}
- "You shall know a word by the company it keeps!" (Eirth, 1957)

\section*{Distributional Similarity}
- "You shall know a word by the company it keeps!" (Firth, 1957)
- A bottle of tezgüino is on the table.

\section*{Distributional Similarity}
- "You shall know a word by the company it keeps!" (Firth, 1957)
- A bottle of tezgüino is on the table.
- Everybody likes tezgüino.

\section*{Distributional Similarity}
- "You shall know a word by the company it keeps!" (Firth, 1957)
- A bottle of tezgüino is on the table.
- Everybody likes tezgüino.
- Tezgüino makes you drunk.

\section*{Distributional Similarity}
- "You shall know a word by the company it keeps!" (Firth, 1957)
- A bottle of tezgüino is on the table.
- Everybody likes tezgüino.
- Tezgüino makes you drunk.
- We make tezgüino from corn.

\section*{Distributional Similarity}
- "You shall know a word by the company it keeps!" (Firth, 1957)
- A bottle of tezgüino is on the table.
- Everybody likes tezgüino.
- Tezgüino makes you drunk.
- We make tezgüino from corn.
- Tezguino; corn-based alcoholic beverage. (From Lin, 1998a)

\section*{Distributional Similarity}
- How can we represent the "company" of a word?

\section*{Distributional Similarity}
- How can we represent the "company" of a word?
- How can we make similar words have similar representations?

\section*{Why use word vectors?}
- With words, a feature is a word identity
- Feature 5: 'The previous word was "terrible"'
- requires exact same word to be in training and test
- One-hot vectors:
- "terrible": [0 000001000 ... 0]
- Length = size of vocabulary
- All words are as different from each other
- e.g. "terrible" is as different from "bad" as from "awesome"

\section*{Why use word vectors?}
- With embeddings (= vectors):
- Feature is a word vector
- 'The previous word was vector [35,22,17, ...]
- Now in the test set we might see a similar vector [34,21,14, ...]
- We can generalize to similar but unseen words!

\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"


\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
- \(\vec{a}=\langle 2,4\rangle\)


\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
- \(\vec{a}=\langle 2,4\rangle\)
- \(\vec{b}=\langle-4,3\rangle\)


\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
- \(\vec{a}=\langle 2,4\rangle\)
- \(\vec{b}=\langle-4,3\rangle\)


\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
- \(\vec{a}=\langle 2,4\rangle\)
- \(\vec{b}=\langle-4,3\rangle\)


\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
- \(\vec{a}=\langle 2,4\rangle\)
- \(\vec{b}=\langle-4,3\rangle\)


\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
- \(\vec{a}=\langle 2,4\rangle\)
- \(\vec{b}=\langle-4,3\rangle\)


\section*{Vectors: A Refresher}
- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
- \(\vec{a}=\langle 2,4\rangle\)
- \(\vec{b}=\langle-4,3\rangle\)


\section*{Vectors: A Refresher}


UNTASTY'

\section*{Vectors: A Refresher}


\section*{Basic vector operations}
- Addition: \(\mathbf{x}+\mathbf{y}=\left\langle\mathbf{x}_{0}+\mathbf{y}_{0}, \ldots, \mathbf{x}_{n}+\mathbf{y}_{n}\right\rangle\)
- Subtraction: \(\mathbf{x}-\mathbf{y}=\left\langle\mathbf{x}_{0}-\mathbf{y}_{0}, \ldots, \mathbf{x}_{n}-\mathbf{y}_{n}\right\rangle\)
- Scalar multiplication: \(k \mathbf{x}=\left\langle k \mathbf{x}_{0}, \ldots, k \mathbf{x}_{n}\right\rangle\)

Length: \(\|\mathbf{x}\|=\sqrt{\sum_{i} \mathbf{x}_{i}^{2}}\)

\title{
Vector Distances: Manhattan \& Euclidean
}
- Manhattan Distance \(d_{\text {manhattan }}(x, y)=\sum\left|x_{i}-y_{i}\right|\)
- (Distance as cumulative horizontal + vertical moves)
- Euclidean Distance
\[
d_{\text {euclidean }}(x, y)=\sum_{i}\left(x_{i}-y_{i}\right)^{2}
\]
- Too sensitive to extreme values

\section*{Vector Distances: Manhattan \& Euclidean}
- Manhattan Distance \(d_{\text {manhattan }}(x, y)=\sum\left|x_{i}-y_{i}\right|\)
- (Distance as cumulative horizontal + vertical moves)
- Euclidean Distance
\[
d_{\text {euclidean }}(x, y)=\sum_{i}\left(x_{i}-y_{i}\right)^{2}
\]
- Too sensitive to extreme values


\section*{Vector Similarity: Dot Product}
- Produces real number scalar from product of vectors' components
\[
\operatorname{sim}_{\mathrm{dot}}(x, y)=x \cdot y=\sum_{i} x_{i} \times y_{i}
\]
- Biased toward longer (larger magnitude) vectors
- In our case, vectors with fewer zero counts

\section*{Vector Similarity: Cosine}
- If you normalize the dot product for vector magnitude...
- ...result is same as cosine of angle between the vectors.
\[
\operatorname{sim}_{\cos (x, y)}=\frac{x \cdot y}{\|x\|\|y\|}=\frac{\sum_{i} x_{i} \times y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}
\]

\section*{Bag of Words Vectors}
- Represent 'company' of word such that similar words will have similar representations
- 'Company’ = context

\section*{Bag of Words Vectors}
- Represent 'company' of word such that similar words will have similar representations
- 'Company' = context
- Word represented by context feature vector
- Many alternatives for vector

\section*{Bag of Words Vectors}
- Represent 'company' of word such that similar words will have similar representations
- 'Company' = context
- Word represented by context feature vector
- Many alternatives for vector
- Initial representation:
- 'Bag of words' feature vector
- Feature vector length \(N\), where \(N\) is size of vocabulary
- \(f_{i}+=1\) if word \(_{i}\) within window size \(w\) of word

\section*{Bag of Words Vectors}


\section*{Bag of Words Vectors}
- Usually reweighted, with
e.g. tf-idf, ppmi
- Still sparse
- Very highdimensional: IVI
\begin{tabular}{ccccccccc}
\hline & aardvark & \(\ldots\) & computer & data & result & pie & sugar & \(\ldots\) \\
\hline cherry & 0 & \(\ldots\) & 2 & 8 & 9 & 442 & 25 & \(\ldots\) \\
strawberry & 0 & \(\ldots\) & 0 & 0 & 1 & 60 & 19 & \(\ldots\) \\
digital & 0 & \(\ldots\) & 1670 & 1683 & 85 & 5 & 4 & \(\ldots\) \\
information & 0 & \(\ldots\) & 3325 & 3982 & 378 & 5 & 13 & \(\ldots\) \\
\hline
\end{tabular}

\section*{Homework 1}

\section*{Next Time}
- Skip-Gram with Negative Sampling
- How optimization framework applies to this problem
- Introduction of two tasks that we will use throughout the class
- Language modeling
- Text classification [sentiment analysis]```

