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Announcements
● Office hours:
● Shane:
● Wed 3-5PM
● GUG 415K + https://washington.zoom.us/my/shanest 
● Saiya: 
● Tuesday 3:30 - 5:30PM
● GUG 407 + https://washington.zoom.us/s/92010041700 

● HW1 now due April 6 (as opposed to April 4), i.e. free late submission
● Dropbox folder for the course on patas is delayed
● Sign up for patas account ASAP if you have not done so already: list “575” as course
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Today’s Plan
● Terminology / Notation

● Gradient Descent

● Word Vectors, intro

● Homework 1

3



Basic Terminology / Notation
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Supervised Learning
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Supervised Learning
● Given: a dataset 
● : input for i-th example

● : output for i-th example

𝒟 = {(x1, y1), …, (xn, yn)}
xi ∈ X
yi ∈ Y
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Supervised Learning
● Given: a dataset 
● : input for i-th example

● : output for i-th example

𝒟 = {(x1, y1), …, (xn, yn)}
xi ∈ X
yi ∈ Y

● For example:
● Sentiment analysis:
● Input: bag of words representation of “This movie was great.”
● Output: 4 [on a scale 1-5]

● Language modeling:
● Input: “This movie was”
● Output: “great”

5



Supervised Learning

6



Supervised Learning
● Given: a dataset 
● : input for i-th example
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Supervised Learning
● Given: a dataset 
● : input for i-th example

● : output for i-th example

𝒟 = {(x1, y1), …, (xn, yn)}
xi ∈ X
yi ∈ Y

● Goal: learn a function  which:
● “Does well” on the given data 
● Generalizes well to unseen data

f : X → Y
𝒟
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Parameterized Functions
● A learning algorithm searches for a function  amongst a space of possible 

functions

● Parameters define a family of functions
● : general symbol for parameters

● : input x, parameters ; model/function output 

● Example: the family of linear functions 
●

● Later: neural network architecture defines the family of functions

f

θ
̂y = f(x; θ) θ ̂y

f(x) = mx + b
θ = {m, b}
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Loss Minimization
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● General form of optimization problem

● : loss function (“objective function”);
● How “close” are the model’s outputs to the true outputs

● : local (per-instance) loss, averaged over training instances
● More later: depends on the particular task, among other things

● View the loss as a function of the model’s parameters

ℒ( ̂Y, Y)

ℓ( ̂y, y)

ℒ( ̂Y, Y) =
1

|Y | ∑
i

ℓ( ̂y(xi), yi)

ℒ(θ) := ℒ( ̂Y, Y) = ℒ( f(X; θ), Y)



Loss Minimization
● The optimization problem:

● Example: (least-squares) linear regression
● ℓ( ̂y, y) = ( ̂y − y)2
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θ* = arg min
θ

ℒ(θ)

m*, b* = arg min
m,b ∑

i

((mxi + b) − yi)2

source

https://en.wikipedia.org/wiki/Linear_regression


Learning: (Stochastic) Gradient Descent
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Gradient Descent: Basic Idea
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Gradient Descent: Basic Idea
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Gradient Descent: Basic Idea
● The gradient of the loss w/r/t parameters tells which direction in parameter 

space to “walk” to make the loss smaller (i.e. to improve model outputs)

● Guaranteed to work in linear model case
● Can get stuck in local minima for non-linear functions, like NNs
● [More precisely: if loss is a convex function of the parameters, gradient descent 

is guaranteed to find an optimal solution.  For non-linear functions, the loss will 
generally not be convex.]
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Derivatives
● The derivative of a function of one real variable measures how much the 

output changes with respect to a change in the input variable 
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Derivatives
● The derivative of a function of one real variable measures how much the 

output changes with respect to a change in the input variable 

13

f(x) = x2 + 35x + 12
df
dx

= 2x + 35

f(x) = ex

df
dx

= ex



Partial Derivatives
● A partial derivative of a function of several variables measures its 

derivative with respect one of those variables, with the others held 
constant.
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f(x, y) = 10x3y2 + 5xy3 + 4x + y
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constant.

14

f(x, y) = 10x3y2 + 5xy3 + 4x + y

∂f
∂x

= 30x2y2 + 5y3 + 4



Partial Derivatives
● A partial derivative of a function of several variables measures its 

derivative with respect one of those variables, with the others held 
constant.

14

f(x, y) = 10x3y2 + 5xy3 + 4x + y

∂f
∂x

= 30x2y2 + 5y3 + 4

∂f
∂y

= 20x3y + 15xy2 + 1



Gradient
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Gradient
● The gradient of a function  is a vector function, returning all 

of the partial derivatives 
 
 
 
 
 
 

f(x1, x2, . . . xn)
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Gradient
● The gradient of a function  is a vector function, returning all 

of the partial derivatives 
 
 
 
 
 
 

f(x1, x2, . . . xn)

● The gradient is perpendicular to the level curve at a point
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Gradient
● The gradient of a function  is a vector function, returning all 

of the partial derivatives 
 
 
 
 
 
 

f(x1, x2, . . . xn)

● The gradient is perpendicular to the level curve at a point

● The gradient points in the direction of greatest rate of increase of f
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∇f = ⟨ ∂f
∂x1

,
∂f
∂x2

, …,
∂f
∂xn ⟩

f(x, y) = 4x2 + y2

∇f = ⟨8x,2y⟩



Gradient and Level Curves
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Gradient and Level Curves
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Gradient and Level Curves
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f(x, y) = 4x2 + y2

∇f = ⟨8x,2y⟩

Level curves: f(x, y) = c

( 1.25,0)

(1,1)

(0, 5)

Q: what are the actual gradients 
at those points?



Gradient Descent and Level Curves
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source

https://en.wikipedia.org/wiki/Gradient_descent#/media/File:Gradient_descent.svg


Gradient Descent Algorithm
● Initialize 

● Repeat until convergence:

θ0

18

θn+1 = θn − α∇ℒ( ̂Y(θn), Y)
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Gradient Descent Algorithm
● Initialize 

● Repeat until convergence:

θ0

18

θn+1 = θn − α∇ℒ( ̂Y(θn), Y)

Learning rate

● High learning rate: big steps, may bounce and “overshoot” the target

● Low learning rate: small steps, smoother minimization of loss, but can be slow



Gradient Descent: Minimal Example
● Task: predict a target/true value 

● “Model”: 
● A single parameter: the actual guess

● Loss: Euclidean distance

y = 2
̂y(θ) = θ
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ℒ( ̂y(θ), y) = ( ̂y − y)2 = (θ − y)2



Gradient Descent: Minimal Example
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Stochastic Gradient Descent
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Stochastic Gradient Descent
● The above is called “batch” gradient descent
● Updates once per pass through the dataset
● Expensive, and slow; does not scale well
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● The above is called “batch” gradient descent
● Updates once per pass through the dataset
● Expensive, and slow; does not scale well

● Stochastic gradient descent: single example at a time; very noisy estimate of true gradient

● Mini-batch gradient descent:

● Break the data into “mini-batches”: small chunks of the data

● Compute gradients and update parameters for each batch

● Mini-batch of size 1 = single example = stochastic gradient descent

● A noisy estimate of the true gradient, but works well in practice; more parameter updates
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Stochastic Gradient Descent
● The above is called “batch” gradient descent
● Updates once per pass through the dataset
● Expensive, and slow; does not scale well

● Stochastic gradient descent: single example at a time; very noisy estimate of true gradient

● Mini-batch gradient descent:

● Break the data into “mini-batches”: small chunks of the data

● Compute gradients and update parameters for each batch

● Mini-batch of size 1 = single example = stochastic gradient descent

● A noisy estimate of the true gradient, but works well in practice; more parameter updates

● Epoch: one pass through the whole training data

21



Stochastic Gradient Descent
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initialize parameters / build model

for each epoch:

data = shuffle(data)
batches = make_batches(data)

for each batch in batches:

outputs = model(batch)
loss = loss_fn(outputs, true_outputs)
compute gradients
update parameters



Word Vectors, Intro
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

24

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.5122&rep=rep1&type=pdf
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.

24
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.
● We make tezgüino from corn.
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.
● We make tezgüino from corn.

● Tezguino; corn-based alcoholic beverage. (From Lin, 1998a)

24

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
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Distributional Similarity
● How can we represent the “company” of a word?

25



Distributional Similarity
● How can we represent the “company” of a word?

● How can we make similar words have similar representations?
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Why use word vectors?
● With words, a feature is a word identity
● Feature 5: 'The previous word was  "terrible"'
● requires exact same word to be in training and test
● One-hot vectors:
● “terrible”: [0 0 0 0 0 0 1 0 0 0 … 0]
● Length = size of vocabulary
● All words are as different from each other
● e.g. “terrible” is as different from “bad” as from “awesome”
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Why use word vectors?
● With embeddings (= vectors): 
● Feature is a word vector
● 'The previous word was vector [35,22,17, …]
● Now in the test set we might see a similar vector [34,21,14, …]
● We can generalize to similar but unseen words! 
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● A vector is a list of numbers

● Each number can be thought of as representing a “dimension”

Vectors: A Refresher
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● A vector is a list of numbers

● Each number can be thought of as representing a “dimension”
● a⃗=〈2,4〉

Vectors: A Refresher
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● A vector is a list of numbers

● Each number can be thought of as representing a “dimension”
● a⃗=〈2,4〉
● b⃗=〈-4,3〉

Vectors: A Refresher
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● A vector is a list of numbers

● Each number can be thought of as representing a “dimension”
● a⃗=〈2,4〉
● b⃗=〈-4,3〉

Vectors: A Refresher
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● A vector is a list of numbers

● Each number can be thought of as representing a “dimension”
● a⃗=〈2,4〉
● b⃗=〈-4,3〉

Vectors: A Refresher
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Vectors: A Refresher
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Vectors: A Refresher
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xkcd.com/388

WTF, Grapefruit?

https://xkcd.com/388/


Basic vector operations
● Addition: 

● Subtraction: 

● Scalar multiplication: 

●
Length: 

x + y = ⟨x0 + y0, …, xn + yn⟩
x − y = ⟨x0 − y0, …, xn − yn⟩

kx = ⟨kx0, …, kxn⟩
∥x∥ = ∑

i

x2
i

32



Vector Distances: 
Manhattan & Euclidean

● Manhattan Distance
● (Distance as cumulative horizontal + vertical moves) 

● Euclidean Distance

● Too sensitive to extreme values

33

dmanhattan(x, y) = ∑
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∣ xi − yi ∣

deuclidean(x, y) = ∑
i

(xi − yi)2



Vector Distances: 
Manhattan & Euclidean

● Manhattan Distance
● (Distance as cumulative horizontal + vertical moves) 

● Euclidean Distance

● Too sensitive to extreme values

33

manhattan

euclidean

a⃗

b⃗

dmanhattan(x, y) = ∑
i

∣ xi − yi ∣

deuclidean(x, y) = ∑
i

(xi − yi)2



Vector Similarity: 
Dot Product

● Produces real number scalar 
from product of vectors’  
components

● Biased toward longer (larger magnitude) vectors
● In our case, vectors with fewer zero counts

34

simdot(x, y) = x ⋅ y = ∑
i

xi × yi



● If you normalize the dot product for vector magnitude…

● …result is same as cosine of angle between the vectors.

Vector Similarity: 
Cosine

35

simcos(x, y) =
x ⋅ y

∥x∥∥y∥
=

∑i xi × yi

∑i x2
i ∑i y2

i



Bag of Words Vectors
● Represent ‘company’ of word such that similar words will have similar 

representations
● ‘Company’ = context
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Bag of Words Vectors
● Represent ‘company’ of word such that similar words will have similar 

representations
● ‘Company’ = context

● Word represented by context feature vector
● Many alternatives for vector

● Initial representation:
● ‘Bag of words’ feature vector

● Feature vector length N, where N is size of vocabulary
● fi+=1 if wordi within window size w of word

36



Bag of Words Vectors
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Bag of Words Vectors
● Usually re-

weighted, with 
e.g. tf-idf, ppmi

● Still sparse

● Very high-
dimensional: |V|
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Homework 1
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Next Time
● Skip-Gram with Negative Sampling
● How optimization framework applies to this problem

● Introduction of two tasks that we will use throughout the class
● Language modeling
● Text classification [sentiment analysis]
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