Gradient Descent; Word Vectors

LING 574 Deep Learning for NLP Shane Steinert-Threlkeld

Announcements

- Office hours:
 - Shane:
 - Wed 3-5PM
 - GUG 415K + <u>https://washington.zoom.us/my/shanest</u>
 - Saiya:
 - Tuesday 3:30 5:30PM
 - GUG 407 + <u>https://washington.zoom.us/s/92010041700</u>
- HW1 now due April 6 (as opposed to April 4), i.e. free late submission
 - Dropbox folder for the course on patas is delayed
 - Sign up for patas account ASAP if you have not done so already: list "575" as course

Today's Plan

- Terminology / Notation
- Gradient Descent
- Word Vectors, intro
- Homework 1

Basic Terminology / Notation

- Given: a dataset $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example

- Given: a dataset $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example
- For example:
 - Sentiment analysis:
 - Input: bag of words representation of "This movie was great."
 - Output: 4 [on a scale 1-5]
 - Language modeling:
 - Input: "This movie was"
 - Output: "great"

- Given: a dataset $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example

- Given: a dataset $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example

- Goal: *learn* a function $f: X \to Y$ which:
 - "Does well" on the given data \mathscr{D}
 - Generalizes well to unseen data

W UNIVERSITY of WASHINGTON

Parameterized Functions

- A learning algorithm searches for a function f amongst a space of possible functions
- Parameters define a family of functions
 - θ : general symbol for parameters
 - $\hat{y} = f(x; \theta)$: input x, parameters θ ; model/function output \hat{y}
- Example: the family of linear functions f(x) = mx + b• $\theta = \{m, b\}$
- Later: neural network architecture defines the family of functions

Loss Minimization

- General form of optimization problem
- $\mathscr{L}(\hat{Y}, Y)$: loss function ("objective function"); $\mathscr{L}(\hat{Y}, Y) = \frac{1}{|Y|} \sum_{i} \ell(\hat{y}(x_i), y_i)$
 - How "close" are the model's outputs to the true outputs
 - $\ell(\hat{y}, y)$: local (per-instance) loss, averaged over training instances
 - More later: depends on the particular task, among other things
- View the loss as a function of the model's parameters

$$\mathscr{L}(\theta) := \mathscr{L}(\hat{Y}$$

 $Y(X,Y) = \mathscr{L}(f(X;\theta),Y)$

• The optimization problem:

• Example: (least-squares) linear regression • $\ell(\hat{y}, y) = (\hat{y} - y)^2$

$$m^*, b^* = \underset{m,b}{\operatorname{arg\,min}} \sum_{i} (($$

Learning: (Stochastic) Gradient Descent

Gradient Descent: Basic Idea

Gradient Descent: Basic Idea

Gradient Descent: Basic Idea

- The gradient of the loss w/r/t parameters tells which direction in parameter space to "walk" to make the loss smaller (i.e. to improve model outputs)
- Guaranteed to work in linear model case
 - Can get stuck in local minima for non-linear functions, like NNs
 - [More precisely: if loss is a *convex* function of the parameters, gradient descent is guaranteed to find an optimal solution. For non-linear functions, the loss will generally *not* be convex.]

Derivatives

• The derivative of a function of one real variable measures how much the output changes with respect to a change in the input variable

Derivatives

- output changes with respect to a change in the input variable
 - $\frac{df}{dx} = 2x + 35$

• The derivative of a function of one real variable measures how much the

$f(x) = x^2 + 35x + 12$

Derivatives

- output changes with respect to a change in the input variable
 - $\frac{df}{dx} = 2x + 35$

$$f(x) = df$$
$$\frac{df}{dx} = d$$

• The derivative of a function of one real variable measures how much the

$f(x) = x^2 + 35x + 12$

 e^{x}

 e^{x}

• A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

 A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

 $f(x, y) = 10x^3y^2 + 5xy^3 + 4x + y$

• A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

$$f(x, y) = 10x^3y^2 + 5xy^3 + 4x + y$$
$$\frac{\partial f}{\partial x} = 30x^2y^2 + 5y^3 + 4$$

• A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

$$\begin{aligned} \hat{f}(x,y) &= 10x^3y^2 + 5xy^3 + 4x + y \\ \frac{\partial f}{\partial x} &= 30x^2y^2 + 5y^3 + 4 \\ \frac{\partial f}{\partial y} &= 20x^3y + 15xy^2 + 1 \end{aligned}$$

 $\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$

 $f(x, y) = 4x^2 + y^2$ $\nabla f = \langle 8x, 2y \rangle$

 $\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$

 $f(x, y) = 4x^2$ $\nabla f = \langle 8x, x \rangle$

• The gradient is perpendicular to the *level curve* at a point

$$\left\{ \begin{array}{c} \frac{\partial f}{\partial x_{2}}, \dots, \frac{\partial f}{\partial x_{n}} \right\} \\ + y^{2} \\ \frac{\partial f}{\partial x_{2}}, \dots, \frac{\partial f}{\partial x_{n}} \\ \frac{\partial f}{\partial x_{n}} \\ \end{array} \right\}$$

$$\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$$
$$(y) = 4x^2 + y^2$$
$$\nabla f = \left\langle 8x, 2y \right\rangle$$

- f(x,
- The gradient is perpendicular to the *level curve* at a point
- The gradient points in the direction of greatest rate of increase of f

Level curves: f(x, y) = c

3

 $f(x, y) = 4x^2 + y^2$ $\nabla f = \langle 8x, 2y \rangle$

Level curves: f(x, y) = c

 $f(x, y) = 4x^2 + y^2$ $\nabla f = \langle 8x, 2y \rangle$

Level curves: f(x, y) = c

 $f(x, y) = 4x^2 + y^2$ $\nabla f = \langle 8x, 2y \rangle$

Level curves: f(x, y) = c

Q: what are the actual gradients at those points?

Gradient Descent and Level Curves

Gradient Descent Algorithm

- Initialize θ_0
- Repeat until convergence:

$\theta_{n+1} = \theta_n - \alpha \nabla \mathscr{L}(\hat{Y}(\theta_n), Y)$

Gradient Descent Algorithm

- Initialize θ_0
- Repeat until convergence:

$\theta_{n+1} = \theta_n - \alpha \nabla \mathscr{L}(\hat{Y}(\theta_n), Y)$ Learning rate

Gradient Descent Algorithm

- Initialize θ_0
- Repeat until convergence:

$$\theta_{n+1} = \theta_n - \theta_n -$$

- High learning rate: big steps, may bounce and "overshoot" the target
- Low learning rate: small steps, smoother minimization of loss, but can be slow

$-\alpha \nabla \mathscr{L}(\hat{Y}(\theta_n), Y)$ Learning rate

Gradient Descent: Minimal Example

- Task: predict a target/true value y = 2
- "Model": $\hat{y}(\theta) = \theta$
 - A single parameter: the actual guess
- Loss: Euclidean distance

 $\mathscr{L}(\hat{y}(\theta), y) = (\hat{y} - y)^2 = (\theta - y)^2$

W UNIVERSITY of WASHINGTON

Gradient Descent: Minimal Example

 $\mathcal{L}(\theta, 2)$

A

$$egin{aligned} &rac{\partial}{\partial heta} \mathcal{L}(heta, y) = 2(heta - y) \ & heta heta = heta_t - lpha \cdot rac{\partial}{\partial heta} \mathcal{L}(heta, y) \end{aligned}$$

W UNIVERSITY of WASHINGTON

- The above is called "batch" gradient descent
 - Updates once per pass through the dataset
 - Expensive, and slow; does not scale well

W UNIVERSITY of WASHINGTON

- The above is called "batch" gradient descent
 - Updates once per pass through the dataset
 - Expensive, and slow; does not scale well

• Stochastic gradient descent: single example at a time; very noisy estimate of true gradient

- The above is called "batch" gradient descent
 - Updates once per pass through the dataset
 - Expensive, and slow; does not scale well
- Mini-batch gradient descent:
 - Break the data into "mini-batches": small chunks of the data
 - Compute gradients and update parameters for each batch
 - Mini-batch of size 1 = single example = stochastic gradient descent
 - A noisy estimate of the true gradient, but works well in practice; more parameter updates

• *Stochastic* gradient descent: single example at a time; very noisy estimate of true gradient

- The above is called "batch" gradient descent
 - Updates once per pass through the dataset
 - Expensive, and slow; does not scale well
- Mini-batch gradient descent:
 - Break the data into "mini-batches": small chunks of the data
 - Compute gradients and update parameters for each batch
 - Mini-batch of size 1 = single example = stochastic gradient descent
 - A noisy estimate of the true gradient, but works well in practice; more parameter updates
- Epoch: one pass through the whole training data

• *Stochastic* gradient descent: single example at a time; very noisy estimate of true gradient

initialize parameters / build model

for each epoch:

data = shuffle(data) batches = make batches(data)

for each batch in batches:

outputs = model(batch) loss = loss fn(outputs, true outputs) compute gradients update parameters

Word Vectors, Intro

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of *tezgüino* is on the table.

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of *tezgüino* is on the table.
 - Everybody likes *tezgüino*.

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of *tezgüino* is on the table.
 - Everybody likes *tezgüino*.
 - *Tezgüino* makes you drunk.

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of *tezgüino* is on the table.
 - Everybody likes *tezgüino*.
 - *Tezgüino* makes you drunk.
 - We make *tezgüino* from corn.

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of *tezgüino* is on the table.
 - Everybody likes tezgüino.
 - *Tezgüino* makes you drunk.
 - We make *tezgüino* from corn.
- Tezquino; corn-based alcoholic beverage. (From Lin, 1998a)

• How can we represent the "company" of a word?

- How can we represent the "company" of a word?
- How can we make similar words have similar representations?

Why use word vectors?

- With words, a feature is a word identity
 - Feature 5: 'The previous word was "terrible"'
 - requires exact same word to be in training and test
 - One-hot vectors:
 - "terrible": [0 0 0 0 0 0 1 0 0 0 ... 0]
 - Length = size of vocabulary
 - All words are as different from each other
 - e.g. "terrible" is as different from "bad" as from "awesome"

Why use word vectors?

- With embeddings (= vectors):
 - Feature is a word vector
 - 'The previous word was vector [35,22,17, ...]
 - Now in the test set we might see a similar vector [34,21,14, ...]
 - We can generalize to similar but unseen words!

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4, 3 \rangle$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4, 3 \rangle$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$

W UNIVERSITY of WASHINGTON

TASTY PEACHES SEELED GRAPES STRA REARIES SEEDLESS BLUEBERRIES (HERRIES FEARS PLLINS GREEN -> EASY RED BANANAS TOMATCES LEMOUS V UNTASTY

xkcd.com/388

TASTY \bigcirc PEACHES SEELED GRAPES STRA REARIES SEEDLESS BLUEBERRIES (HERRIES FEAR PLLINS GREEN -> EASY RED BANANAS TOMATCES LEMONS UNTASTY

<u>xkcd.com/388</u>

Basic vector operations

- Addition: $\mathbf{x} + \mathbf{y} = \langle \mathbf{x}_0 + \mathbf{y}_0, \dots, \mathbf{x}_n + \mathbf{y}_n \rangle$
- Subtraction: $\mathbf{x} \mathbf{y} = \langle \mathbf{x}_0 \mathbf{y}_0, \dots, \mathbf{x}_n \mathbf{y}_n \rangle$
- Scalar multiplication: $k\mathbf{x} = \langle k\mathbf{x}_0, \dots, k\mathbf{x}_n \rangle$ • Length: $\|\mathbf{x}\| = \sqrt{\sum_{i} \mathbf{x}_{i}^{2}}$

Vector Distances: Manhattan & Euclidean $d_{\text{manhattan}}(x, y) = \sum |x_i - y_i|$

- Manhattan Distance
 - (Distance as cumulative horizontal + vertical moves)
- Euclidean Distance

$$d_{\text{euclidean}}(x, y) = \sum_{i} (x_i - y_i)^2$$

• Too sensitive to extreme values

Vector Distances: Manhattan & Euclidean $d_{\text{manhattan}}(x, y) = \sum |x_i - y_i|$

- Manhattan Distance
 - (Distance as cumulative horizontal + vertical moves)
- Euclidean Distance

$$d_{\text{euclidean}}(x, y) = \sum_{i} (x_i - y_i)^2$$

• Too sensitive to extreme values

W UNIVERSITY of WASHINGTON

Vector Similarity: Dot Product

• Produces real number scalar from product of vectors' components

• Biased toward *longer* (larger magnitude) vectors • In our case, vectors with fewer zero counts

$$sim_{dot}(x, y) = x \cdot y = \sum_{i} x_i \times y_i$$

Vector Similarity: Cosine

- If you normalize the dot product for vector magnitude...
- ...result is same as cosine of angle between the vectors.

- representations
- 'Company' = context

Represent 'company' of word such that similar words will have similar

- representations
- 'Company' = context
- Word represented by context feature vector
 - Many alternatives for vector

Represent 'company' of word such that similar words will have similar

- representations
 - 'Company' = context
- Word represented by context feature vector
 - Many alternatives for vector
- Initial representation:
 - 'Bag of words' feature vector
 - Feature vector length N, where N is size of vocabulary
 - f_i +=1 if word_i within window size w of word

Represent 'company' of word such that similar words will have similar

	aardvark	•••	computer	data	result	pie	sugar	•••
cherry	0		2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	•••
digital	0		1670	1683	85	5	4	
information	0		3325	3982	378	5	13	•••

- Usually reweighted, with e.g. tf-idf, ppmi
- Still sparse
- Very highdimensional: IVI

	aardvark	•••	computer	data	result	pie	sugar	•••
cherry	0		2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	•••
digital	0		1670	1683	85	5	4	
information	0		3325	3982	378	5	13	•••

Homework 1

Next Time

- Skip-Gram with Negative Sampling
 - How optimization framework applies to this problem
- Introduction of two tasks that we will use throughout the class
 - Language modeling
 - Text classification [sentiment analysis]

