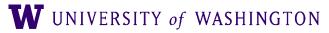
HW #9

- Implementing Coherence Relation Sense Classification
- Part of Shallow Discourse Parsing pipeline
- Goals:
 - Explore issues in shallow discourse parsing.
 - Gain familiarity with the Penn Discourse Treebank and CoNLL data.
 - Gain some further familiarity with vector-based word embeddings
 - Implement a relation sense classification system.

Goals and Task

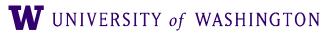
Components

- We provide:
 - Gold data in <u>CoNLL16 format</u>
 - Train and test split
 - 50-dimensional GloVe embeddings trained on Wikipedia and Gigaword


- You:
 - Read in the data
 - Build train/test classification vectors
 - For each of Arg1, Arg2: average word vectors together to build total vector
 - Train a classifier on train vectors, evaluate on test vectors

Data Example (One Line of JSON)

- Arg1:
 - RawText
 - ...
- Arg2:
 - RawText
 - ...
- Connective:
 - RawText
- Sense
- Type (Explicit or Implicit)
- . . .



- You can use any pre-implemented classifier that you'd like
- <u>scikit-learn</u> offers many, e.g.:
 - SVM
 - Nearest neighbors
- Usual API:
 - Instantiate model
 - model.fit(X, Y): train the model
 - model.predict(X): make predictions on new inputs

Training a Classifier

