
Dependency Grammars and Parser
LING 571 — Deep Processing for NLP

Shane Steinert-Threlkeld

1



Ambiguity of the Week

2



Ambiguity of the Week 2
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“What if my pet is not made of chicken and turkey?” —my brother
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Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion to CFG
● By Graph-based models
● By transition-based parsing

● HW4 + mid-term feedback
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Dependency Grammar
● [P]CFGs:
● Phrase-Structure Grammars
● Focus on modeling constituent structure
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Dependency Grammar
● [P]CFGs:
● Phrase-Structure Grammars
● Focus on modeling constituent structure

● Dependency grammars:
● Syntactic structure described in terms of
● Words
● Syntactic/semantic relations between words
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Dependency Parse
● A Dependency parse is a tree,* where:
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● Nodes correspond to words in string
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Dependency Parse
● A Dependency parse is a tree,* where:
● Nodes correspond to words in string
● Edges between nodes represent dependency relations
● Relations may or may not be labeled (aka typed)
● *: in very special cases, can argue for cycles
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Dependency Parse Example: 
They hid the letter on the shelf
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Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition
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appos appositional modifier

det determiner

prep prepositional modifier
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Alternative Representation
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Why Dependency Grammar?
● More natural representation for many tasks
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Why Dependency Grammar?
● More natural representation for many tasks
● Clear encapsulation of predicate-argument structure
● Phrase structure may obscure, e.g. wh-movement

● Good match for question-answering, relation extraction
● Who did what to whom?
● = (Subject) did (theme) to (patient)
● Helps with parallel relations between roles in questions, and roles in answers
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● Easier handling of flexible or free word order

● How does CFG handle variation in word order?

Why Dependency Grammar?

14

7

44

4VIT

3R

24

2

8YIWHE]

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

7

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

44

4VIT

SR

24

2

8YIWHE]
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● How does CFG handle variation in word order?
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● Easier handling of flexible or free word order

● How does CFG handle variation in word order?
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● English has relatively fixed word order

● Big problem for languages with freer word order

Why Dependency Grammar?

15

7

44

4VIT

3R

24

2

8YIWHE]

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

7

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

44

4VIT

SR

24

2

8YIWHE]

S → PP NP VP S → NP VP PP



● How do dependency structures represent the difference?

Why Dependency Grammar?
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● How do dependency structures represent the difference?
● Same structure
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● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive
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● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive

= temporal modifier

Why Dependency Grammar?
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● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive

= temporal modifier

Why Dependency Grammar?
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Natural Efficiencies
● Phrase Structures: 
● Must derive full trees of many non-terminals
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Natural Efficiencies
● Phrase Structures: 
● Must derive full trees of many non-terminals

● Dependency Structures:
● For each word, identify
● Syntactic head, h
● Dependency label, d
● Inherently lexicalized
● Strong constraints hold between pairs of words
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Visualization
● Web demos:
● displaCy: https://explosion.ai/demos/displacy
● Stanford CoreNLP: http://corenlp.run/

● spaCy and stanza Python packages have good built-in parsers

● LaTeX: tikz-dependency (https://ctan.org/pkg/tikz-dependency)
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Resources
● Universal Dependencies:
● Consistent annotation scheme (i.e. 

same POS, dependency labels)
● Treebanks for >70 languages
● Sizes: German, Czech, Japanese, 

Russian, French, Arabic, …

20

https://universaldependencies.org/


Summary
● Dependency grammars balance complexity and expressiveness
● Sufficiently expressive to capture predicate-argument structure
● Sufficiently constrained to allow efficient parsing
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Summary
● Dependency grammars balance complexity and expressiveness
● Sufficiently expressive to capture predicate-argument structure
● Sufficiently constrained to allow efficient parsing

● Still not perfect
● “On Tuesday I called in sick” vs. “I called in sick on Tuesday”
● These feel pragmatically different (e.g. topically), might want to represent 

difference syntactically.
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Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion from CFG 

● By Graph-based models
● By transition-based parsing
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Conversion: PS → DS
● Can convert Phrase Structure (PS) to Dependency Structure (DS)
● …without the dependency labels
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Conversion: PS → DS
● Can convert Phrase Structure (PS) to Dependency Structure (DS)
● …without the dependency labels

● Algorithm:
● Identify all head children in PS
● Make head of each non-head-child depend on head of head-child
● Use a head percolation table to determine headedness
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Conversion: PS → DS
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Conversion: PS → DS
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Conversion: PS → DS
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Head Percolation Table
● Finding the head of an NP:
● If the rightmost word is preterminal, return
● …else search Right→Left for first child which is NN, NNP, NNPS…
● …else search Left→Right for first child which is NP
● …else search Right→Left for first child which is $, ADJP, PRN
● …else search Right→Left for first child which is CD
● …else search Right→Left for first child which is JJ, JJS, RB or QP
● …else return rightmost word.
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From J&M Page 411, via Collins (1999)

https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/lvbsh/TN_proquest304536592


Conversion: DS → PS
● Can map any projective dependency tree to PS tree

● Projective:
● Does not contain “crossing” dependencies w.r.t. word order
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Non-Projective DS
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Projective DS
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More Non-Projective Parses
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He is mostly not even interested in the new things and in most cases, he has no money for it either.

From McDonald et. al, 2005
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http://dl.acm.org/citation.cfm?id=1220641


Conversion: DS → PS
● For each node w with outgoing arcs…
● …convert the subtree w and its dependents t1,…,tn to a new subtree:
● Nonterminal: Xw

● Child: w
● Subtrees t1,…,tn in original sentence order
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Conversion: DS → PS
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Conversion: DS → PS
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Conversion: DS → PS
● What about labeled dependencies?
● Can attach labels to nonterminals associated with non-heads

● e.g. Xlittle → Xlittle:nmod 

● Doesn’t create typical PS trees
● Does create fully lexicalized, labeled, context-free trees

● Can be parsed with any standard CFG parser
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Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion to CFG
● By Graph-based models 

● By transition-based parsing
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Graph-based Dependency Parsing
● Goal: Find the highest scoring dependency tree T̂ for sentence S
● If S is unambiguous, T is the correct parse

● If S is ambiguous, T is the highest scoring parse

● Where do scores come from?
● Weights on dependency edges by learning algorithm
● Learned from dependency treebank

● Where are the grammar rules?
● …there aren’t any! All data-driven.
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Graph-based Dependency Parsing
● Map dependency parsing to Maximum Spanning Tree (MST)

● Build fully connected initial graph:
● Nodes: words in sentence to parse
● Edges: directed edges between all words
● + Edges from ROOT to all words

● Identify maximum spanning tree
● Tree s.t. all nodes are connected
● Select such tree with highest weight
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Graph-based Dependency Parsing
● Arc-factored model:
● Weights depend on end nodes & link
● Weight of tree is sum of participating arcs

48



Initial Graph: (McDonald et al, 2005b)

● John saw Mary
● All words connected: ROOT only has outgoing arcs

● Goal: Remove arcs to create a tree covering all words
● Resulting tree is parse

49
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Maximum Spanning Tree
● McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

● Sketch of algorithm:
● For each node, greedily select incoming arc with max weight
● If the resulting set of arcs forms a tree, this is the MST.
● If not, there must be a cycle.
● “Contract” the cycle: Treat it as a single vertex
● Recalculate weights into/out of the new vertex
● Recursively do MST algorithm on resulting graph

● Running time: naïve: O(n3); Tarjan: O(n2)

● Applicable to non-projective graphs
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Step 1 & 2
● Find, for each word, the highest scoring incoming edge.
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Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?
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Step 1 & 2
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● Is it a tree?
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Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?
● No, there’s a cycle.

● Collapse the cycle
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Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?
● No, there’s a cycle.

● Collapse the cycle

● And re-examine the edges again
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Calculating Weights for Collapsed Vertex
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Calculating Weights for Collapsed Vertex
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Step 3
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● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge



Step 3
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● With cycle collapsed, recurse on step 1:
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Step 3
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● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
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Step 3
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● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!
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Step 3
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● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!
● …but must recover collapsed portions.
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Step 3
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● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!
● …but must recover collapsed portions.
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MST Algorithm
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Learning Weights
● Weights for arc-factored model learned from dependency treebank
● Weights learned for tuple ( wi, wj, l )

● McDonald et al, 2005a employed discriminative ML
● MIRA (Crammer and Singer, 2003)

● Operates on vector of local features
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Features for Learning Weights
● Simple categorical features for (wi, L, wj) including:
● Identity of wi (or char 5-gram prefix), POS of wi 

● Identity of wj (or char 5-gram prefix), POS of wj

● Label of L, direction of L
● Number of words between wi, wj 
● POS tag of wi-1, POS tag of wi+1

● POS tag of wj-1, POS tag of wj+1

● Features conjoined with direction of attachment and distance between 
words
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Neural Graph-based Parsing
● Instead of hand-engineered features, let a neural network learn which 

features matter!
● Same algorithm, but scores for arcs from NN

58https://aclanthology.org/Q16-1023/ 

https://aclanthology.org/Q16-1023/


Dependency Parsing
● Dependency Grammars:
● Compactly represent predicate–argument structure
● Lexicalized, localized
● Natural handling of flexible word order

● Dependency parsing:
● Conversion to phrase structure trees

● Graph-based parsing (MST), efficient non-proj O(n2)

● Next time: Transition-based parsing
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