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Roadmap
● CKY + back-pointers

● PCFGs

● PCFG Parsing (PCKY)

● Inducing a PCFG

● Evaluation

● [Earley parsing]

● HW3 + collaboration
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CKY Parsing: Backpointers
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Current CKY Algorithm
● Limitations:

● Only stores non-terminals in cell
● Not rules or cells corresponding to RHS
● Stores SETS of non-terminals
● Multiple rules with same LHS collide

● Currently only acceptance/recognition
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Backpointers
● Instead of list of possible nonterminals for that node, each cell should 

have:
● Nonterminal for the node
● Pointer to left and right children cells
● Either direct pointer to cell, or indices
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bp_2 = BackPointer()
bp_2.l_child = [X2, (1,4)]
bp_2.r_child = [PP, (4,6)]

For example:



CKY Parser
● Pair each nonterminal with back-pointer to cells 

from which it was derived

● Last step: 
● construct trees from back-pointers in [ 0, n ]
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Resulting Parses
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CKY Discussion
● Running time:
● O(n3) where n is the length of the input string
● Inner loop grows as square of # of non-terminals

● Expressiveness:
● As implemented, requires CNF
● Weak equivalence to original grammar
● Doesn’t capture full original structure
● Back-conversion?
● Can do binarization, terminal conversion
● Unit productions requires change in CKY
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CKY + Back-pointers Example

12



cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
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cky_table[0,6][S] = {(NP, (0,1),
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cky_table[0,1][NP] = {(‘I’)}
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cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
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cky_table[0,6][S] = {(NP, (0,1),
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cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
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                       PP, (4,6))}
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cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
                       NP, (2,6)),
                      (X2, (1,4),
                       PP, (4,6))}
cky_table[1,2][Verb] = {(‘prefer’)}
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cky_table[2,3][Det] = {(‘a’)}
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cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}

cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
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                      (X2, (1,4),
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Probabilistic Context-Free Grammars
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Probabilistic Context-free Grammars: 
Roadmap

● Motivation: Ambiguity

● Approach:
● Definition
● Disambiguation
● Parsing
● Evaluation
● Enhancements
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Motivation
● What about ambiguity?

● Current algorithm can represent it

● …can’t resolve it.
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Probabilistic Parsing
● Provides strategy for solving disambiguation 

problem
● Compute the probability of all analyses
● Select the most probable

● Employed in language modeling for speech 
recognition
● N-gram grammars predict words, constrain search
● Also, constrain generation, translation

24



PCFGs: Formal Definition
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PCFGs: Formal Definition
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N a set of non-terminal symbols (or variables)

Σ a set of terminal symbols (disjoint from N)

R
a set of rules of productions, each of the form A → 𝜷[p], where A is a non-terminal where 

A is a non-terminal, 𝜷 is a string of symbols from the infinite set of strings (Σ⋃N)∗ and p 

is a number between 0 and 1 expressing P(𝜷|A)

S a designated start symbol



PCFGs
● Augment each production with probability that LHS 

will be expanded as RHS
● P(A→𝛽) 

● P(A→𝛽|A) 

● P(𝛽|A) 

● P(RHS | LHS) 

● NB: the first is often used; but the latter are what’s 
really meant.
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● Sum over all possible expansions is 1 
 
 
 

● A PCFG is consistent if sum of probabilities of all sentences in language 
is 1
● Recursive rules often yield inconsistent grammars (Booth & Thompson, 1973)

PCFGs

27

∑
β

P(A → β) = 1

https://dl.acm.org/citation.cfm?id=1310632


Example PCFG: Augmented ℒ1
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Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]

S → Aux NP VP [.15] Noun → book [.10] | flight [.30] | meal [.15] | money [0.5]  
           | flights [0.40] | dinner [.10]S → VP [.05]

NP → Pronoun [.35] Verb → book [.30] | include [.30] | prefer [.40]
NP → Proper-Noun [.30] Pronoun → I [.40] | she [.05] | me [.15] | you [.40]
NP → Det Nominal [.20] Proper-Noun → Houston [.60] | NWA [.40]

NP → Nominal [.15] Aux → does [.60] | can [.40]
Nominal → Noun [.75] Preposition → from [.30] | to [.30] | on [.20] | near [.15] 

           | through [.05]Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]

VP → Verb [.35]
VP → Verb NP [.20]

VP → Verb NP PP [.10]
VP → Verb PP [.15]

VP → Verb NP NP [.05]
VP → VP PP [.15]

PP → Preposition NP [1.0]



Example PCFG: Augmented ℒ1
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Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]

S → Aux NP VP [.15] Noun → book [.10] | flight [.30] | meal [.15] | money [0.5]  
           | flights [0.40] | dinner [.10]S → VP [.05]

NP → Pronoun [.35] Verb → book [.30] | include [.30] | prefer [.40]
NP → Proper-Noun [.30] Pronoun → I [.40] | she [.05] | me [.15] | you [.40]
NP → Det Nominal [.20] Proper-Noun → Houston [.60] | NWA [.40]

NP → Nominal [.15] Aux → does [.60] | can [.40]
Nominal → Noun [.75] Preposition → from [.30] | to [.30] | on [.20] | near [.15] 

           | through [.05]Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]

VP → Verb [.35]
VP → Verb NP [.20]

VP → Verb NP PP [.10]
VP → Verb PP [.15]

VP → Verb NP NP [.05]
VP → VP PP [.15]

PP → Preposition NP [1.0]



● A PCFG assigns probability to each parse tree T for input S

● Probability of T: product of all rules used to derive T

Disambiguation

30

P(T, S) =
n

∏
i=1

P(RHSi |LHSi)

P(T, S) = P(T)P(S |T) = P(T)
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S → NP VP [0.8] S → NP VP [0.8]
NP → Pron [0.35] NP → Pron [0.35]
Pron → I [0.4] Pron → I [0.4]

VP → V NP PP [0.1] VP → V NP [0.2]
V → prefer [0.4] V → prefer [0.4]

NP → Det Nom [0.2] NP → Det Nom [0.2]
Det → a [0.3] Det → a [0.3]

Nom → N [0.75] Nom → Nom PP [0.05]
N → flight [0.3] Nom → N [0.75]
PP → P NP [1.0] N → flight [0.3]

P → on [0.2] PP → P NP [1.0]
NP → NNP [0.3] P → on [0.2]

NNP → NWA [0.4] NP → NNP [0.3]
NNP → NWA [0.4]
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S → NP VP [0.8] S → NP VP [0.8]
NP → Pron [0.35] NP → Pron [0.35]
Pron → I [0.4] Pron → I [0.4]

VP → V NP PP [0.1] VP → V NP [0.2]
V → prefer [0.4] V → prefer [0.4]

NP → Det Nom [0.2] NP → Det Nom [0.2]
Det → a [0.3] Det → a [0.3]

Nom → N [0.75] Nom → Nom PP [0.05]
N → flight [0.3] Nom → N [0.75]
PP → P NP [1.0] N → flight [0.3]

P → on [0.2] PP → P NP [1.0]
NP → NNP [0.3] P → on [0.2]

NNP → NWA [0.4] NP → NNP [0.3]
NNP → NWA [0.4]

~1.452 × 10-6 ~1.452 × 10-7



Parsing Problem for PCFGs
● Select T such that (s.t.) 
 
 
 

● String of words S is yield of parse tree 

● Select the tree T̂ that maximizes the probability of the parse

32

̂T(S) = argmax
T s.t. S=yield(T)

P(T)



Application: 
Language Modeling

● n-grams helpful for modeling the probability of a string
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Application: 
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:
● Must use 10+-grams… too sparse
● Approximate using conditioning on limited context: 

● PCFGs are able to give probability of entire string without as bad sparsity

● Model probability of syntactically valid sentences
● Not just probability of sequence of words

33

P(wi |wi−1) =
P(wi−1, wi)

P(wi−1)



PCFGs: Parsing

34



Probabilistic CKY (PCKY)
● Like regular CKY
● Assumes grammar in Chomsky Normal Form (CNF)
● A → B C 

● A → w 

● Represent input with indices b/t words:
●  0 Book 1 that 2 flight 3 through 4 Houston 5

35



Probabilistic CKY (PCKY)
● For input string length n and non-terminals V
● Cell [ i, j, A ] in ( n+1 ) × ( n+1 ) × V matrix
● Contains probability that A spans [i, j]

36



PCKY Algorithm

37

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability 
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar } 
      table[ j–1, j, A ] ← P(A → words[j]) 
for i ← from j–2 downto 0 do 
for k ← i + 1 to j–1 do 
for all { A | A → B C ∈ grammar, 
       and table[i, k, B] > 0 and table[ k, j, C ] > 0 } 
if (table[ i, j, A ] < P(A → BC )×table[ i, k, B ]×table[ k,j,C ]) then 
    table[ i, j, A ] ← P(A → BC )×table[i,k,B]×table[k,j,C] 
    back[ i, j, A ] ← { k, B, C } 
return BUILD_TREE(back[ 1, LENGTH(words), S ]), table[ 1,LENGTH(words), S ]
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    back[ i, j, A ] ← { k, B, C } 
return BUILD_TREE(back[ 1, LENGTH(words), S ]), table[ 1,LENGTH(words), S ]
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function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability 
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar } 
      table[ j–1, j, A ] ← P(A → words[j]) 
for i ← from j–2 downto 0 do 
for k ← i + 1 to j–1 do 
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return BUILD_TREE(back[ 1, LENGTH(words), S ]), table[ 1,LENGTH(words), S ]
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function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability 
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar } 
      table[ j–1, j, A ] ← P(A → words[j]) 
for i ← from j–2 downto 0 do 
for k ← i + 1 to j–1 do 
for all { A | A → B C ∈ grammar, 
       and table[i, k, B] > 0 and table[ k, j, C ] > 0 } 
if (table[ i, j, A ] < P(A → BC )×table[ i, k, B ]×table[ k,j,C ]) then 
    table[ i, j, A ] ← P(A → BC )×table[i,k,B]×table[k,j,C] 
    back[ i, j, A ] ← { k, B, C } 
return BUILD_TREE(back[ 1, LENGTH(words), S ]), table[ 1,LENGTH(words), S ]



PCKY Grammar Segment
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S → NP VP [0.80] Det → the [0.40]
NP → Det N [0.30] Det → a [0.40]
VP → V NP [0.20] V → includes [0.05]

N → meal [0.01]
N → flight [0.02]



Det – 0.4

[0,1]

PCKY Matrix
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The   flight   includes   a   meal
0 1 2 3 4 5
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N → flight [0.02]
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NP → Det N [0.30]
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Det → the [0.40]
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N → flight [0.02]

P = P(NP → Det N)·  
   P(Det → the)· 
  P(N → flight)
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0 1 2 3 4 5
The   flight   includes   a   meal

Det – 0.4

[0,1]

NP

[0,2]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

P = P(NP → Det N)·  
   P(Det → the)· 
  P(N → flight)

P = 0.3· 0.4· 0.02 = 0.00024



PCKY Matrix

42

0 1 2 3 4 5
The   flight   includes   a   meal

P = P(NP → Det N)·  
P(Det → a)· 

  P(N → flight)

P = 0.3· 0.4· 0.02 = 0.00024

Det – 0.4

[0,1]

NP – 0.0024

[0,2]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]



Det – 0.4

[0,1]

NP – 0.0024

[0,2] [0,3] [0,4]

S – 2.304×10-8

[0,5]

N – 0.02

[1,2] [1,3] [1,4] [1,5]

V – 0.05

[2,3] [2,4]

VP – 1.2×10-5

[2,5]

Det – 0.4

[3,4]

NP – 0.0012

[3,5]

N – 0.01

[4,5]

PCKY Matrix
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0 1 2 3 4 5
The   flight   includes   a   meal

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]



Inducing a PCFG
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Learning Probabilities
● Simplest way: 
● Use treebank of parsed sentences
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Learning Probabilities
● Simplest way: 
● Use treebank of parsed sentences
● To compute probability of a rule, count: 
● Number of times a nonterminal is expanded:                             Σ𝛾 Count(𝛼→𝛾)
● Number of times a nonterminal is expanded by a given rule:             Count(𝛼→𝛽)

● Alternative: Learn probabilities by re-estimating
● (Later)

45

P(α → β |α) =
Count(α → β)

∑γ Count(α → γ)
=

Count(α → β)
Count(α)



Probabilistic Parser Development Paradigm
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Train Dev Test

Size

Large
 

(eg. WSJ 2–21, 
39,830 sentences)

Small

(e.g. WSJ 22)

Small/Med

(e.g. WSJ, 23,
2,416 sentences)

Usage Estimate rule 
probabilities

Tuning/Verification, 
Check for Overfit

Held Out, 
Final Evaluation
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Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

● How can we tell how good a parse is?
● Maximally strict:  identical to ‘gold standard’
● Partial credit:
● Constituents in output match those in reference
● Same start point, end point, non-terminal symbol

48



Parseval
● How can we compute parse score from 

constituents?

● Multiple Measures:

49

Labeled Recall (LR) = 
# of correct constituents in hypothetical parse

# of total constituents in reference parse

Labeled Precision (LP) =
# of correct constituents in hypothetical parse

# of total consituents in hypothetical parse



Parseval
● F-measure:
● Combines precision and recall

● Let β ∈ ℝ ,  β > 0 that adjusts P vs. R s.t. 

● Fβ -measure is then:

● With F1-measure as

50

β ∝
R
P

Fβ = (1 + β2) ⋅
P ⋅ R

β2 ⋅ P + R

F1 =
2PR

P + R



Evaluation: Example

51

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

0      1       2        3         4

0      1       2        3         4



Evaluation: Example

51

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4) S(0,4)

0      1       2        3         4

0      1       2        3         4



Evaluation: Example

51

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

S(0,4)

NP(0,1)

0      1       2        3         4

0      1       2        3         4



Evaluation: Example

51

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

S(0,4)

NP(0,1)

VP(1,4)

0      1       2        3         4

0      1       2        3         4



Evaluation: Example

51

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

NP(2,3)

S(0,4)

NP(0,1)

VP(1,4)

NP(2,4)

0      1       2        3         4

0      1       2        3         4



Evaluation: Example

51

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

NP(2,3)

PP(3,4)

S(0,4)

NP(0,1)

VP(1,4)

NP(2,4)

PP(3,4)

0      1       2        3         4

0      1       2        3         4



Evaluation: Example

51

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

NP(2,3)

PP(3,4)

S(0,4)

NP(0,1)

VP(1,4)

NP(2,4)

PP(3,4)

0      1       2        3         4

0      1       2        3         4
LP: 4/5
LR: 4/5
F1: 4/5



● Crossing Brackets:
● # of constituents where produced parse has bracketings that overlap for the 

siblings:
● ((A B) C) — { (0,2), (2,3) } 

and hyp. has  
(A (B C)) — { (0,1), (1, 3) }

Parser Evaluation

52

TOP

A B

C

TOP

A

B

C from evalb.c



State-of-the-Art Parsing
● Parsers trained/tested on Wall Street Journal PTB
● LR: 94%+; 
● LP: 94%+; 
● Crossing brackets: 1%

● Standard implementation of Parseval:
● evalb
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Evaluation Issues
● Only evaluating constituency

● There are other grammar formalisms:
● LFG (Constraint-based)
● Dependency Structure

● Extrinsic evaluation
● How well does getting the correct parse match the 

semantics, etc?

54



Earley Parsing

55



Earley vs. CKY
● CKY doesn’t capture full original structure
● Can back-convert binarization, terminal conversion
● Unit non-terminals require change in CKY
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Earley vs. CKY
● CKY doesn’t capture full original structure
● Can back-convert binarization, terminal conversion
● Unit non-terminals require change in CKY

● Earley algorithm
● Supports parsing efficiently with arbitrary grammars
● Top-down search
● Dynamic programming
● Tabulated partial solutions
● Some bottom-up constraints

56



Earley Algorithm
● Another dynamic programming solution
● Partial parses stored in “chart”
● Compactly encodes ambiguity
● O(N3)

● Chart entries contain:
● Subtree for a single grammar rule
● Progress in completing subtree
● Position of subtree w.r.t. input

57



Earley Algorithm
● First, left-to-right pass fills out a chart with N+1 states
● Chart entries — sit between words in the input string
● Keep track of states of the parse at those positions
● For each word position, chart contains set of states representing all partial parse 

trees generated so far
● e.g. chart[0] contains all partial parse trees generated at the beginning of 

sentence

58



Chart Entries
● Three types of constituents:
● Predicted constituents
● In-progress constituents
● Completed constituents

59



Parse Progress
● Represented by Dotted Rules
● Position of • indicates type of constituent

● 0 Book 1 that 2 flight 3
● S → • VP                [0,0]     (predicted)
● NP → Det • Nom    [1,2]     (in progress)
● VP → V NP •          [0,3]     (completed)

● [x,y] tells us what portion of the input is spanned so far by rule

● Each state si: <dotted rule>, [<back pointer>, <current position>]

60



0 Book 1 that 2 flight 3
● S → • VP, [0,0]
● First 0 means S constituent begins at the start of input
● Second 0 means the dot is here too
● So, this is a top-down prediction
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0 Book 1 that 2 flight 3
● S → • VP, [0,0]
● First 0 means S constituent begins at the start of input
● Second 0 means the dot is here too
● So, this is a top-down prediction

● NP → Det • Nom, [1,2]
● the NP begins at position 1
● the dot is at position 2
● so, Det has been successfully parsed
● Nom predicted next

61



● VP → V NP • [0,3]
● Successful VP parse of entire input

0 Book 1 that 2 flight 3 (continued)

62

Book that flight
0 1 2 3

S → •  VP

VP →  V NP •

NP → Det • Nominal



Successful Parse
● Final answer found by looking at last entry in chart

● If entry resembles S → α • [0,N] then input parsed successfully

● Chart will also contain record of all possible parses of input string, given 
the grammar

63



Parsing Procedure for the Earley Algorithm
● Move through each set of states in order, applying one of three operations:
● predictor: add predictions to the chart
● scanner: read input and add corresponding state to chart
● completer: move dot to right when new constituent found

● Results (new states) added to current or next set of states in chart

● No backtracking and no states removed: keep complete history of parse
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Earley Algorithm
function EARLEY-PARSE(words, grammar) returns chart 

ENQUEUE((γ⟶ • S, [0,0]), chart[0]) 
for i ⟵ from 0 to LENGTH(words) do 

for each state in chart[i] do 
if INCOMPLETE?(state) and 

NEXT-CAT(state) is not a part of speech then 
PREDICTOR(state) 

elseif INCOMPLETE?(state) and 
NEXT-CAT(state) is a part of speech then 

SCANNER(state) 
else 

COMPLETER(state) 
end 

end 
return(chart)
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Earley Algorithm
procedure PREDICTOR((A→α • B β , [i,j])) 

for each (B → γ) in GRAMMAR-RULES-FOR(B,grammar) do 
ENQUEUE((B→• γ, [j,j]), chart[j]) 

end 

procedure SCANNER((A → α • B β,[i,j])) 
if B ⊂ PARTS-OF-SPEECH(word[j]) then 

ENQUEUE((B → word[j] •, [j,j+1]), chart[j+1] ) 

procedure COMPLETER((B → γ •, [j,k])) 
for each (A → α • B β, [i,j]) in chart[j] do 

ENQUEUE((A → α B •  β, [i,k]), chart[k]) 
end
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3 Main Subroutines of Earley
● Predictor
● Adds predictions into the chart

● Scanner
● Reads the input words and enters states representing those words into the chart 

● Completer
● Moves the dot to the right when new constituents are found

67



Predictor
● Intuition:
● Create new state for top-down prediction of new phrase

● Applied when non part-of-speech non-terminals are to the right of a dot:
● S → • VP [0,0]

● Adds new states to current chart
● One new state for each expansion of the non-terminal in the grammar 

VP → • V          [0,0]       
VP → • V NP    [0,0]       

68



Chart[0]

69

S0 γ → • S [0,0] Dummy start state

S1 S → • NP VP [0.0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor

S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper-Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor

S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor
S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor



Chart[1]
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S12 Verb → book • [0,1] Scanner

S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer

S17 S → VP • [0,1] Completer

S18 VP → VP • PP [0,1] Completer

S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper-Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor



Book that flight
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Book that flight
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ᅭ
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S0:  γ → • S [0,0] 
S3:  S → • VP [0,0]



Book that flight
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S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0]



Book that flight
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ᅭ
7

:4

:IVF

� FSSO

24

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0]
S12: Verb → • book [0,0]



Book that flight

75

ᅭ
7

:4

:IVF

FSSO �

24

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0]
S12: Verb → book • [0,1]



Book that flight
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ᅭ
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:4
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FSSO

24

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → Verb • NP [0,1]



Book that flight
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S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
S8:  VP → Verb • NP [0,1]



Book that flight
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S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
S8:  VP → Verb • NP [0,1]
S21: NP → • Det Nominal [1,1]



Book that flight
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2SQMREP

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
S8:  VP → Verb • NP [0,1]
S21: NP → • Det Nominal [1,1] 
S23: Det → • “that” [1,1]



Book that flight
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S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
S8:  VP → Verb • NP [0,1]
S21: NP → • Det Nominal [1,1] 
S23: Det → “that” • [1,2]



Book that flight
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S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
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Book that flight
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S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
S8:  VP → Verb • NP [0,1]
S21: NP → Det • Nominal [1,2] 
S25: Nominal → • Noun [2,2]



Book that flight
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ᅭ
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:4

:IVF
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(IX

XLEX
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2SYR
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S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
S8:  VP → Verb • NP [0,1]
S21: NP → Det • Nominal [1,2] 
S25: Nominal → • Noun [2,2]
S28: Noun → “flight” • [2,3]



Book that flight
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S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
S8:  VP → Verb • NP [0,1]
S21: NP → Det • Nominal [1,2] 
S25: Nominal → Noun • [2,3]
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S0:  γ → • S [0,0] 
S3:  S → VP • [0,1]
S8:  VP → Verb • NP [0,1]
S21: NP → Det Nominal • [1,3] 
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procedure ENQUEUE(state, chart-entry) 
if state is not already in chart-entry then 

PUSH(state, chart-entry) 
end



What about recursion?
● We now have a top-down parser in hand.  Does it enter infinite loops on 

rules like S -> S ‘and’ S?

● No! 
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procedure ENQUEUE(state, chart-entry) 
if state is not already in chart-entry then 

PUSH(state, chart-entry) 
end

Exercise: parse ‘table and chair’ using the very simple grammar
Nom -> Nom ‘and’ Nom | ‘table’ | ‘chair’


