## Introduction

LING 571 - Deep Processing Techniques for NLP Shane Steinert-Threlkeld

## Roadmap

- Motivation
- Language and Intelligence
- Knowledge of Language
- Course Overview
- Intro to Syntax and Parsing

How are you feeling about the start of the quarter and a new academic year generally?

## Motivation: Applications

- Applications of Speech and Language Processing
- Call Routing
- Information Retrieval
- Question Answering
- Machine Translation
- Dialog Systems
- Spell- and Grammar- Checking
- Sentiment Analysis
- Information Extraction


## Building on Many Fields

- Linguistics: Morphology, phonology, syntax, semantics...
- Psychology: Reasoning, mental representations
- Formal Logic
- Philosophy (of Language)
- Theory of Computation: Automata theory
- Artificial Intelligence: Search, Reasoning, Knowledge Representation, Machine Learning, Pattern Matching
- Probability


## Roadmap

- Motivation
- Language and Intelligence
- Knowledge of Language
- Course Overview
- Intro to Syntax and Parsing


## Operationalizing Intelligence: The Turing Test (1950)

- Two contestants: Human vs. Computer
- Judge: human
- Test: interact via text questions
- Question: Can judge tell which contestant is human?


## Operationalizing Intelligence: The Turing Test (1950)

- Two contestants: Human vs. Computer
- Judge: human
- Test: interact via text questions
- Question: Can judge tell which contestant is human?
- Crucially:
- Posits that passing requires language use and understanding


## Limitations of the Turing Test

- ELIZA (Weizenbaum, 1966) [Try it Online]


## Limitations of the Turing Test

- ELIZA (Weizenbaum, 1966) [Try it Online]
- Simulates Rogerian therapist:

User: You are like my father in some ways
ELIZA: WHAT RESEMBLANCE DO YOU SEE
USER: You are not very aggressive
ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

## Limitations of the Turing Test

- ELIZA (Weizenbaum, 1966) [Try it Online]
- Simulates Rogerian therapist:

User: You are like my father in some ways
ELIZA: WHAT RESEMBLANCE DO YOU SEE
USER: You are not very aggressive
ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

- Passes the Test! (Sort of)


## Limitations of the Turing Test

- ELIZA (Weizenbaum, 1966) [Try it Online]
- Simulates Rogerian therapist:

User: You are like my father in some ways
ELIZA: WHAT RESEMBLANCE DO YOU SEE
USER: You are not very aggressive
ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

- Passes the Test! (Sort of)
- Simple pattern matching technique


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Problem: "Bots":


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Problem: "Bots":
- Automated agents overrun services


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Problem: "Bots":
- Automated agents overrun services
- Challenge: Prove you're human


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Problem: "Bots":
- Automated agents overrun services
- Challenge: Prove you're human
- Test: Something a human can do, but a bot can't.


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Problem: "Bots":
- Automated agents overrun services
- Challenge: Prove you're human
- Test: Something a human can do, but a bot can't.
- Solution: CAPTCHAs


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Problem: "Bots":
- Automated agents overrun services
- Challenge: Prove you're human
- Test: Something a human can do, but a bot can't.
- Solution: CAPTCHAs
- Completely Automated Public Turing test to tell Computers and Humans Apart (Von Ahn et al., 2003)


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Problem: "Bots":
- Automated agents overrun services
- Challenge: Prove you're human
- Test: Something a human can do, but a bot can't.
- Solution: CAPTCHAs
- Completely Automated Public Turing test to tell Computers and Humans Apart (Von Ahn et al., 2003)
- Initially: Distorted images, driven by perception


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Problem: "Bots":
- Automated agents overrun services
- Challenge: Prove you're human
- Test: Something a human can do, but a bot can't.
- Solution: CAPTCHAs
- Completely Automated Public Turing test to tell Computers and Humans Apart (Von Ahn et al., 2003)
- Initially: Distorted images, driven by perception
- Long-term: Inspires "arms race"


## CAPTCHA arms race



## CAPTCHA arms race



## Turing Test Revisited:

"On the web, no one knows you're a..."

- Current Incarnation


## Turing Test Revisited:

"On the web, no one knows you're a..."

- Current Incarnation



## Turing Test Revisited:

"On the web, no one knows you're a..."

- Current Incarnation
- Still perception-based



## Turing Test Revisited:

"On the web, no one knows you're a..."

- Current Incarnation
- Still perception-based
- But also relies on world knowledge



## Turing Test Revisited:

"On the web, no one knows you're a..."

- Current Incarnation
- Still perception-based
- But also relies on world knowledge
- "What is a bus?"



## Turing Test Revisited:

"On the web, no one knows you're a..."

- Current Incarnation
- Still perception-based
- But also relies on world knowledge
- "What is a bus?"
- Assumes that the user has extrinsic, shared world knowledge



## Turing Test Revisited:

## "On the web, no one knows you're a..."

- Current Incarnation
- Still perception-based
- But also relies on world knowledge
- "What is a bus?"
- Assumes that the user has extrinsic, shared world knowledge

off the mark com



## Turing Test Revisited

```
O- Lil但Adonise
@LilAdonise
What Makes you human?
To Love and care for others. \(X\)
Selecting all images with traffic light. \(\square\)
```


## The Turing Test in the LLM era

## nature

Explore content $\vee$ About the journal $\vee$ Publish with us $\vee$ Subscribe
nature > news feature > article

News FEATURE | 25 July 2023

## ChatGPT broke the Turing test - the race is on for new ways to assess AI

Large language models mimic human chatter, but scientists disagree on their ability to reason.

Celeste Biever

- $f$


[^0]
## The Turing Test in the LLM era

## nature

Explore content $\vee \quad$ About the journal $\vee \quad$ Publish with us $\vee \quad$ Subscribe
nature > news feature > article

NEWS FEATURE | 25 July 2023

## ChatGPT broke the Turing test - the race is on for new ways to assess AI

Large language models mimic human chatter, but scientists disagree on their ability to reason.

Celeste Biever
3) $f$

M


[^1]The ConceptARC Benchmark: Evaluating Understanding and Generalization in the ARC Domain

```
Arseny Moskvichev
Santa Fe Institute
Victor Vikram Odouard
Santa Fe Institute
Melanie Mitchell
Santa Fe institute
arseny.moskvichev@gmail.com
Reviewed on OpenReview: https: // openreview. net/forum? id=8ykyGbtt2q
```


## Abstract

The abilities to form and abstract concepts are key to human intelligence, but such abilities remain lacking in state-of-the-art AI systems. There has been substantial research on conceptual abstraction in AI, particularly using idealized domains such as Raven's Progressive Matrices and Bongard problems, but even when AI systems succeed on such problems, the systems are rarely evaluated in depth to see if they have actually grasped the concepts they are meant to capture.
https://openreview.net/forum?id=8ykyGbtt2q

## Roadmap

- Motivation
- Language and Intelligence
- Knowledge of Language
- Course Overview
- Intro to Syntax and Parsing


## Knowledge of Language

- NLP vs. Data Processing


## Knowledge of Language

- NLP vs. Data Processing
- POSIX command "wc"


## Knowledge of Language

- NLP vs. Data Processing
- POSIX command "wc"
- Counts total number of bytes, words, and lines in text file


## Knowledge of Language

- NLP vs. Data Processing
- POSIX command "wc"
- Counts total number of bytes, words, and lines in text file
- bytes and lines $\rightarrow$ data processing


## Knowledge of Language

- NLP vs. Data Processing
- POSIX command "wc"
- Counts total number of bytes, words, and lines in text file
- bytes and lines $\rightarrow$ data processing
- words $\rightarrow$ what do we mean by "word"?


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Phonetics \& Phonology (Ling 450/550)
- Sounds of a language, acoustics
- Legal sound sequences in words


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Morphology (Ling 570)
- Recognize, produce variation in word forms
- Singular vs. plural:

```
    Door + sg -> "door" Door + pl -> "doors"
be + 1st Person + sg + present -> "am"
```


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Part-of-speech Tagging (Ling 570)
- Identify word use in sentence
- Bay (Noun) - Not verb, adjective


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Syntax
- (566: Analysis, 570: Chunking, 571: Parsing)
- Order and group words in sentence
- cf. *"I'm I do, sorry that afraid Dave I can't"


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Semantics (Word Meaning)
- Individual (lexical) + Combined (Compositional)
- 'Open' : AGENT cause THEME to become open;
- 'pod bay doors' $\rightarrow$ doors to the 'pod bay' $\rightarrow$ the bay which houses the pods.


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Pragmatics/Discourse/Dialogue (Ling 571)
- Interpret utterances in context


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Pragmatics/Discourse/Dialogue (Ling 571)
- Interpret utterances in context
- Speech as acts (request vs. statement)


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Pragmatics/Discourse/Dialogue (Ling 571)
- Interpret utterances in context
- Speech as acts (request vs. statement)
- Reference resolution: "I"=[HAL]; "that"=[open...doors]


## Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?

Dave: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Pragmatics/Discourse/Dialogue (Ling 571)
- Interpret utterances in context
- Speech as acts (request vs. statement)
- Reference resolution: "I"=[HAL]; "that"=[open...doors]
- Politeness: "I'm sorry, I'm afraid I can't..."


## Roadmap

- Motivation
- Language and Intelligence
- Knowledge of Language
- Course Overview
- Intro to Syntax and Parsing


## Course Overview: Shallow vs. Deep Processing

- Shallow processing (LING 570)
- Less elaborate linguistic representations
- Usually relies on surface forms (e.g. words)
- Examples: HMM POS-tagging; FST morphology


## Course Overview: Shallow vs. Deep Processing

- Shallow processing (LING 570)
- Less elaborate linguistic representations
- Usually relies on surface forms (e.g. words)
- Examples: HMM POS-tagging; FST morphology
- Deep processing (LING 571)
- Relies on more elaborate linguistic representations
- Deep syntactic analysis (Parsing)
- Rich language understanding (NLU)


## Language Processing Pipeline



## Language Processing Pipeline



## A Note On "Depth"

- "Deep" can be a tricky word these days in NLP


## A Note On "Depth"

- "Deep" can be a tricky word these days in NLP
- "Deep Learning" $\leftarrow$ "Deep Neural Networks" [572 WI, 574/575N SPR]


## A Note On "Depth"

- "Deep" can be a tricky word these days in NLP
- "Deep Learning" $\leftarrow$ "Deep Neural Networks" [572 WI, 574/575N SPR]
- Refers to depth of network architecture:



## A Note On "Depth"

- "Deep" can be a tricky word these days in NLP
- "Deep Learning" $\leftarrow$ "Deep Neural Networks" [572 WI, 574/575N SPR]
- Refers to depth of network architecture:



## A Note On "Depth"

- "Deep Processing" $\leftarrow$ "Depth" of Analysis (Amt. of Abstraction)



## A Note On "Depth"

- "Deep Processing" $\leftarrow$ "Depth" of Analysis (Amt. of Abstraction)
- Depth of parse graph (tree) is one representation



## A Note On "Depth"

- "Deep Processing" $\leftarrow$ "Depth" of Analysis (Amt. of Abstraction)
- Depth of parse graph (tree) is one representation



## A Note On "Depth"

- Depth of NN $\nRightarrow$ Depth of Analysis


## A Note On "Depth"

- Depth of $\mathrm{NN} \nRightarrow$ Depth of Analysis
- NNs are general function approximators


## A Note On "Depth"

- Depth of $\mathrm{NN} \nRightarrow$ Depth of Analysis
- NNs are general function approximators
- can be used for "shallow" analysis:
- POS tagging, chunking, etc.


## A Note On "Depth"

- Depth of $\mathrm{NN} \nRightarrow$ Depth of Analysis
- NNs are general function approximators
- can be used for "shallow" analysis:
- POS tagging, chunking, etc.
- Can also be used for "deep" analysis:
- Semantic role labeling
- Parsing


## A Note On "Depth"

- Depth of $\mathrm{NN} \nRightarrow$ Depth of Analysis
- NNs are general function approximators
- can be used for "shallow" analysis:
- POS tagging, chunking, etc.
- Can also be used for "deep" analysis:
- Semantic role labeling
- Parsing
- In both paradigms, graph depth aids, but $\nRightarrow$ abstraction


## Cross-cutting Themes

- Ambiguity
- How can we select from among alternative analyses?


## Cross-cutting Themes

- Ambiguity
- How can we select from among alternative analyses?
- Evaluation
- How well does this approach perform:
- On a standard data set?
- As part of a system implementation?


## Cross-cutting Themes

- Ambiguity
- How can we select from among alternative analyses?
- Evaluation
- How well does this approach perform:
- On a standard data set?
- As part of a system implementation?
- Multilinguality
- Can we apply the same approach to other languages?
- How much must it be modified to do so?


## Ambiguity: POS

## Ambiguity: POS

- "I made her duck."


## Ambiguity: POS

- "I made her duck."
- Could mean...
- I caused her to duck down.
- I made the (carved) duck she has.
- I cooked duck for her.
- I cooked a duck that she owned.
- I magically turned her into a duck.


## Ambiguity: POS

- "I made her duck."
- Could mean...
- I caused her to duck down
- I made the (carved) duck she has.
- I cooked dứck for her.
- I cooked a dưck that she owned
- I magically turned her into a duck.


## Ambiguity: POS

- "I made her duck."
- Could mean...
- I caused her to duck down.
- I made the (carved) duck she has.
- I cooked duckfor her.
- I cooked a duck that she owned.
- I magically turned her into a duck.

PRON

## Ambiguity: Syntax

- "I made her duck."
- Could mean...
- I made the (carved) duck she has



## Ambiguity: Syntax

- "I made her duck."
- Could mean...
- I made the (carved) duck she has

- I cooked a duck for her



## Ambiguity: Semantics

"I made her duck."

## Ambiguity: Semantics

"I made her duck."

```
I caused her to duck down
made = [AG] cause [TH] [to_do_sth]
```


## Ambiguity: Semantics

"I made her duck."

```
I caused her to duck down made = [AG] cause [TH] [to_do_sth]
I cooked duck for her made = [AG] cook [TH] for [REC]
```


## Ambiguity: Semantics

"I made her duck."

| I coused her to duck down | made $=[$ AG] cause $[T H][$ to_do_sth $]$ |
| :--- | :--- |
| I cooked duck for her | made $=[A G]$ cook $[T H]$ for $[$ REC $]$ |
| I cooked the duck she owned | made $=[A G]$ cook $[T H]$ |

## Ambiguity: Semantics

"I made her duck."

| I caused her to duck down | made $=[$ AG] cause [TH] [to_do_sth] |
| :--- | :--- |
| I cooked duck for her | made $=[\mathrm{AG}]$ cook [TH] for [REC] |
| I cooked the duck she owned | made $=[\mathrm{AG}]$ cook [TH] |
| I made the (carved) duck she has | made $=[\mathrm{AG}]$ sculpted $[\mathrm{TH}]$ <br> duck $=$ duck-shaped-figurine |

## Ambiguity: Semantics

"I made her duck."

| I caused her to duck down | made = [AG] cause [TH] [to_do_sth] |
| :--- | :--- |
| I cooked duck for her | made = [AG] cook [TH] for [REC] |
| I cooked the duck she owned | made = [AG] cook [TH] |
| I made the (carved) duck she has | made = [AG] sculpted [TH] <br> duck = duck-shaped-figurine |
| I magically turned her into a duck | made = [AG] transformed [TH] <br> duck = animal |

## Ambiguity

- Pervasive in language


## Ambiguity

- Pervasive in language
- Not a bug, a feature! (Piantadosi et al 2012)


## Ambiguity

- Pervasive in language
- Not a bug, a feature! (Piantadosi et al 2012)
- "I believe we should all pay our tax bill with a smile. I tried - but they wanted cash."


## Ambiguity

- Pervasive in language
- Not a bug, a feature! (Piantadosi et al 2012)
- "I believe we should all pay our tax bill with a smile. I tried-but they wanted cash."
- What would language be like without ambiguity?


## Ambiguity

- Challenging for computational systems


## Ambiguity

- Challenging for computational systems
- Issue we will return to again and again in class.


## Course Information

## Course Information

- Website is main source of information: https://www.shane.st/teaching/571/ aut23/
- slides, office hours, resources, etc
- Canvas: lecture recordings, homework submission / grading
- Communication!!! Please use the discussion board for questions about the course and its content.
- Other students have same questions, can help each other.
- May get prompter reply. The teaching staff will not respond outside of normal business hours, and may take up to 24 hours.


## Course Information

- Grading, policies, etc: see link under "Policies" on course page
- Shared policies for 570, 571, 572, 574
- Office hours:
- Shane: MW 230-330 (GUG 415K + Zoom; see website)
- Saiya: TBA
- Homeworks:
- 9, released on Wednesday, due the following Wednesday
- With a pause during Thanksgiving week
- [NB: also no class the Wednesday before Thanksgiving]


## Course Content

- Syntax
- (Probabilistic) Context-Free Grammars
- Parsing algorithms (CKY, Earley)
- Dependency Parsing
- Semantics
- Logical / event semantics, lambda calculus
- Distributional semantics, lexical semantics
- Semantic Role Labeling
- Pragmatics / Discourse
- Reference, Co-reference, structure / discourse parsing

What are you most looking forward to in 571 this quarter?

Pomered hy Mrall Fvervwhere

## Syntax Crash Course

LING 571 - Deep Processing Techniques for NLP Shane Steinert-Threlkeld

## Roadmap

- Sentence Structure
- More than a bag of words
- Representation
- Context-free Grammars
- Formal Definition


## Applications

- Shallow techniques useful, but limited
- Deeper analysis supports:
- Grammar checking - and teaching
- Question-answering
- Information extraction
- Dialogue understanding


## Grammar and NLP

- "Grammar" in linguistics is NOT prescriptive high school grammar
- Explicit rules
- "Don’t split infinitives!" etc.


## Grammar and NLP

- "Grammar" in linguistics is NOT prescriptive high school grammar
- Explicit rules
- "Don’t split infinitives!" etc.
- "Grammar" in linguistics IS:
- How to capture structural knowledge of language as a native speaker would have
- Largely implicit
- Learned early, naturally


## More than a Bag of Words

- Sentences are structured
- Choice of structure can impact:


## More than a Bag of Words

- Sentences are structured
- Choice of structure can impact:
- Meaning:
- Dog bites man. vs. Man bites dog.


## More than a Bag of Words

- Sentences are structured
- Choice of structure can impact:
- Meaning:
- Dog bites man. vs. Man bites dog.
- Acceptability:
- Colorless green ideas sleep furiously.
-     * Colorless sleep ideas furiously green.
-     * Dog man bites


## Constituency

- Constituents: basic units of sentences
- Word or group of words that act as a single unit syntactically


## Constituency

- Constituents: basic units of sentences
- Word or group of words that act as a single unit syntactically
- Phrases:
- Noun Phrase (NP)
- Verb Phrase (VP)
- Prepositional Phrase (PP)


## Constituency

- Constituents: basic units of sentences
- Word or group of words that act as a single unit syntactically
- Phrases:
- Noun Phrase (NP)
- Verb Phrase (VP)
- Prepositional Phrase (PP)
- Single unit: type determined by "head"
- e.g. $\mathbf{N}$ heads NP


## Representing Sentence Structure

- Basic Units
- Phrases (NP, VP, etc...)
- Capture constituent structure


## Representing Sentence Structure

- Basic Units
- Phrases (NP, VP, etc...)
- Capture constituent structure
- Subcategorization
- (NP-SUBJ, VP-INTRANS, etc...)
- Capture argument structure
- Components expected by verbs


## Representing Sentence Structure

- Basic Units
- Phrases (NP, VP, etc...)
- Capture constituent structure
- Subcategorization
- (NP-SUBJ, VP-INTRANS, etc...)
- Capture argument structure
- Components expected by verbs
- Hierarchical


## Representation: Context-free Grammars

- CFGs: 4-tuple
- A set of terminal symbols: $\Sigma$
- [think: words]
- A set of nonterminal symbols: $N$
- [think: phrase categories]
- A set of productions $P$ :
- of the form $A \rightarrow \alpha$
- Where $A$ is a non-terminal and $\alpha \in\{\Sigma \cup N\}^{*}$
- A start symbol $S \in N$


## Representation: Context-free Grammars

- Altogether a grammar defines a language $L$
- $L=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$
- The language $L$ is the set of all words in which:
- $S \Rightarrow^{*} w: w$ can be derived starting from $S$ by some sequence of productions


## CFG Components

- Terminals:
- Only appear as leaves of parse tree (hence the name)
- Right-hand side of productions (RHS)
- Words/morphemes of the language
- cat, dog, is, the, bark, chase...


## CFG Components

- Terminals:
- Only appear as leaves of parse tree (hence the name)
- Right-hand side of productions (RHS)
- Words/morphemes of the language
- cat, dog, is, the, bark, chase...
- Non-terminals
- Do not appear as leaves of parse tree
- Appear on left or right side of productions
- Represent constituent phrases of language
- NP, VP, S[entence], etc...


## Representation: Context-free Grammars

- Partial example:
- $\quad$ : the, cat, dog, bit, bites, man
- $N$ : NP, VP, Nom, Det, V, N, Adj
- $P$ :
- $\mathrm{S} \rightarrow \mathrm{NP}$ VP;
- NP $\rightarrow$ Det Nom;
- Nom $\rightarrow$ N Nom I N;
- VP $\rightarrow$ V NP;
- $\mathrm{N} \rightarrow$ cat; $\mathrm{N} \rightarrow$ dog; $\mathrm{N} \rightarrow$ man;
- Det $\rightarrow$ the;
- $\mathrm{V} \rightarrow$ bit; $\mathrm{V} \rightarrow$ bites
- $S: S$



## Parsing Goals

- Acceptance
- Legal string in language?
- Formally: rigid
- Practically: degrees of acceptability


## Parsing Goals

- Acceptance
- Legal string in language?
- Formally: rigid
- Practically: degrees of acceptability
- Analysis
- What structure produced the string
- Produce one (or all) parses for the string


## Parsing Goals

- Acceptance
- Legal string in language?
- Formally: rigid
- Practically: degrees of acceptability
- Analysis
- What structure produced the string
- Produce one (or all) parses for the string
- Will develop techniques to produce analyses of sentences
- Rigidly accept (with analysis) or reject
- Produce varying degrees of acceptability


## Sentence-level Knowledge: Syntax

- Different models of language that specify the expressive power of a formal language


## Representing Sentence Structure

- Why not just Finite State Models (Regular Expressions)?
- Cannot describe some grammatical phenomena
- Inadequate expressiveness to capture generalization


## Representing Sentence Structure: Center Embedding

- Regular Language: $A \rightarrow w ; A \rightarrow w^{*} B$
- Context-Free: $A \rightarrow \alpha A \beta$ (e.g.)
- Allows recursion:


## Representing Sentence Structure: Center Embedding

- Regular Language: $A \rightarrow w ; A \rightarrow w^{*} B$
- Context-Free: $A \rightarrow \alpha A \beta$ (e.g.)
- Allows recursion:
- The luggage arrived


## Representing Sentence Structure: Center Embedding

- Regular Language: $A \rightarrow w ; A \rightarrow w^{*} B$
- Context-Free: $A \rightarrow \alpha A \beta$ (e.g.)
- Allows recursion:
- The luggage arrived
- The luggage that the passengers checked arrived


## Representing Sentence Structure: Center Embedding

- Regular Language: $A \rightarrow w ; A \rightarrow w^{*} B$
- Context-Free: $A \rightarrow \alpha A \beta$ (e.g.)
- Allows recursion:
- The luggage arrived
- The luggage that the passengers checked arrived
- The luggage that the passengers whom the storm delayed checked arrived


## Recursion in Grammar



## Recursion in Grammar



This is JD lying on the desk next to a picture of JD lying on the desk next to a picture of JD lying on the desk.

## Recursion in Grammar



This is JD lying on the desk next to a picture of JD lying on the desk next to a picture of JD lying on the desk.

Exercise: write a toy grammar for producing this sentence! Is context-freeness required?

## Is Context-Free Enough?

- Natural language not finite state


## Is Context-Free Enough?

- Natural language not finite state
- ...but do we need context-sensitivity?
- Many articles have attempted to demonstrate we do
- ...many have failed.


## Is Context-Free Enough?

- Natural language not finite state
- ...but do we need context-sensitivity?
- Many articles have attempted to demonstrate we do
- ...many have failed.
- Solid proof for Swiss German: Cross-Serial Dependencies (Shieber, 1985)
- aibicidi



## Context-Sensitive Example

- Verbs and their arguments must be ordered cross-serially
- Arguments and verbs must match



## What questions do you have?


[^0]:    https://www.nature.com/articles/d41586-023-02361-7

[^1]:    https://www.nature.com/articles/d41586-023-02361-7

