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Abstract

This paper compares two notions of expressive power for a logical language and shows
how they come apart. In particular, it introduces a simple framework called assertability
semantics for handling puzzling features of the interaction of epistemic modals and dis-
junction. As a consequence of the solution to those puzzles, it is shown that the disjunction
is in fact definable: every sentence is equivalent to a sentence without disjunction. But
we then prove that the disjunction is not uniformly definable: no schematic definition of
it can be given in terms of the other connectives of the fragment. We also consider the
extension with inquisitive disjunction and prove that it is expressively complete.

As one of its benefits, logical semantics for natural language allows one to precisely answer
questions about the expressive power of various fragments. Typically, one answers: what classes
of structures can be defined by the fragment in question? Because, however, expressions have a
given syntactic category and therefore semantic type, logical semanticists should be interested
in more fine-grained conceptions of expressive power. In particular, which operations on the
relevant classes of structures are definable? This paper shows how the two kinds of expressive
power can come apart, by studying the interaction of disjunction and modals in the framework of
assertability, or state-based, semantics. We show that although the so-called ‘split’ disjunction
allows no new structures to be defined, its operation is not definable, i.e. the connective is not
uniformly definable.

The paper is structured as follows. Section 1 presents some puzzling data on the behavior
of epistemic modals and disjunction. Section 2 introduces a simple assertability semantics
and develops some of its basic properties. Section 3 shows that disjunction is definable, while
Section 4 introduces the concept of uniform definability and shows that disjunction is not
uniformly definable. Section 5 explores the addition of inquisitive disjunction. We show that
the resulting system is expressively complete, in that every set of states can be defined by
a formula. Therefore, disjunction remains definable in this setting. It is conjectured that
it still fails to be uniformly definable. Finally, we conclude by discussing future directions.
We stress that the paper primarily aims to illustrate the contrast between the two forms of
expressive power. The particular assertability semantics developed, while handling some data
very elegantly, has empirical problems that are addressed in other work.

1

1 Some Puzzles of Epistemic Modals and Disjunction

While the primary motivation of the present paper concerns two types of expressive power,
the semantic system to be studied is designed to capture some very puzzling behavior of the
interaction between (epistemic) modals and disjunctions, which will now be introduced.
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Our first puzzle concerns the well-known problem of free-choice possibility, in which certain
disjunctions with possibility modals entail conjunctions of possibilities. In particular, in the
epistemic case, such inferences appear to arise when disjunctions scope over modals.

2

(1) Bernie Sanders might or might not win the Democratic nomination.
↝ Bernie Sanders might win and he might not win.

(2) Maria might be at Science Park or she might be in the city center.
↝ Maria might be at Science Park and she might be in the center.

These observations motivate (WFC): ◊p ∨ ◊q entails ◊p ∧ ◊q.
Our second puzzle concerns how the interpretation of modals is constrained by their linguis-

tic context, including when embedded under disjunctions. Consider:

(3) Jennifer is at home and might be sick.

(3) is only felicitous if some sick-world is one in which Jennifer is at home. If a speaker knows
that Jennifer can’t be home sick, it is infelicitous. Dorr and Hawthorne [2013] observe that this
‘inherited constraint’ survives embedding under disjunction.

(4) Either Jennifer is at home and might be sick, or she’s playing hookie.

Again, (4) can only be asserted when it’s possible that Jennifer is sick and at home. This
observation motivates (IC): (p ∧ ◊q) ∨ r entails ◊(p ∧ q).

For the final puzzle, notice that sentences like (5) and their order variants – so-called epis-
temic contradictions – are notoriously marked.

(5) # It’s raining and it might not be.

Moreover, as Yalcin [2007] and others have argued, the markedness survives embedding in a
wide variety of contexts, including the antecedents of conditionals and under attitude verbs.
This contrasts with the sentences which gloss ‘might’ as ‘for all that the relevant group knows’.

(6) # If it’s raining and it might not be, you should take the umbrella.

(7) # José thinks both that it might be raining and it isn’t.

Similarly, but more puzzlingly, Mandelkern [2017]
3

has observed that disjoining epistemic
contradictions also sounds terrible. Suppose that you have a lottery ticket but don’t yet know
the outcome. Even in such a situation, (8) cannot be felicitously asserted.

(8) # Either I’ll win and I might not, or I’ll lose and I might not.

Again, the pattern is robust across order variations and different contexts. By contrast with
the other embeddings, nearly no existing theory, including dynamic and domain semantics, can
capture this infelicity. This discussion motivates (DEC): (p ∧ ◊¬p) ∨ (q ∧ ◊¬q) (and their
variants) are inconsistent.

2 Assertability Semantics

To handle the phenomena just discussed, we will focus on the language L that contains propo-
sition letters, negation ¬, conjunction ∧, disjunction ∨, and a possibility modal ◊. We write
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LP for the language of propositional logic, i.e. without ◊ and L− for the language without ∨.
Throughout, □ϕ ∶= ¬◊¬ϕ.

We will call an information model a pair M = ⟨W,V ⟩ of a set of possible worlds and a
valuation V assigning subsets of W to proposition letters. Formulas of L will be interpreted at
information states s ⊆ W . We recursively define the relation M, s ⊩ ϕ, to be read as “ϕ is
assertable relative to information s”. This is intended to capture the following: if an agent has
the information s as her belief-state, then it is epistemically appropriate for her to assert ϕ.

Definition 1 (Hawke and Steinert-Threlkeld [2016]).

s⊩ p iff s ⊆ V (p)
s⊩ ¬ϕ iff for every w ∈ s, {w} /⊩ ϕ

s⊩ ϕ ∧ ψ iff s⊩ ϕ and s⊩ ψ

s⊩ ϕ ∨ ψ iff s1 ⊩ ϕ and s2 ⊩ ψ for some s1, s2 such that s = s1 ∪ s2

s⊩ ◊ϕ iff for some w ∈ s, {w}⊩ ϕ

We write Γ⊩ ϕ iff for every M, s, if s⊩ γ for every γ ∈ Γ, then s⊩ ϕ; and ϕ ≡ ψ iff {ϕ}⊩ ψ
and {ψ}⊩ ϕ. Let JϕKM = {s ∶M, s⊩ ϕ} and JϕK = {⟨M, s⟩ ∶ s ∈ JϕKM}.

These clauses are rather intuitive: p is assertable relative to some information just in case
that information leaves open only p worlds. ¬ϕ is assertable only if the information leaves open
no ϕ worlds. A disjunction is assertable just in case the information is covered by a piece of
information corresponding to each disjunct.

4
And ◊ϕ is assertable just in case a ϕ possibility

is left open by the information.
We first observe that the non-modal fragment behaves classically: a sentence of propositional

logic is assertable at a state just when it is clasically true at every world in that state. This
quickly enables us to observe that this system satisfies (DEC). In the next section, we will
additionally show that the system satisfies both (IC) and (WFC).

Fact 1. For every ϕ ∈ LP , (i) s⊩ ϕ iff {w}⊩ ϕ for every w ∈ s; (ii) {w}⊩ ϕ iff v
∗
w(ϕ) = 1

where v
∗
w is the classical propositional extension of the valuation given by vw(p) = 1 iff w ∈ V (p).

Fact 2. Epistemic contradictions are inconsistent: for every ϕ ∈ LP ,M, s: s /⊩ ϕ ∧ ◊¬ϕ.

The restriction to formulas without modals is both essential and justified by the literature,
where all of the examples are of that type. In particular, the essential restriction is to formulas
which are flat, in the sense of part (i) of Fact 1. To see that the restriction is essential, we note
that ◊p ∧ ◊¬◊p turns out equivalent to ◊p ∧ ◊¬p, which holds at any information state with
both a p and a ¬p world. We find this prediction plausible, but leave its defense to future work.

Corollary 1. The assertability semantics satisfies (DEC): for all ϕ,ψ ∈ LP , and every M, s:

s /⊩ (ϕ ∧ ◊¬ϕ) ∨ (ψ ∧ ◊¬ψ)

Proof. For the disjunction to be assertable at s, there would have to be two sub-states whose
union is s, one at which each disjunct is assertable. By Fact 2, no such sub-states exist.

Before proceeding, we record one important fact about the semantics and one definition,
both of which will be used later. We use P as a variable for sets of proposition letters, and Pϕ

for the set of such letters occurring in ϕ.
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Proposition 1. For all ϕ ∈ L, if M, s⊩ ϕ and M
′
, s
′
⊩ ϕ, then M ⊔M ′

, s ∪ s
′
⊩ ϕ, where

M ⊔M ′
is disjoint union of models, defined in the obvious way.

Proof. By induction. We show the disjunction case, leaving the rest to the reader. Suppose
M, s ⊩ ϕ ∨ ψ and that M

′
, s
′
⊩ ϕ. Then there are s1, s2 such that s = s1 ∪ s2, s1 ⊩ ϕ, and

s2 ⊩ ψ. And mutatis mutandis for s
′
. Then, by the inductive hypothesis, s1 ∪ s

′
1 ⊩ ϕ and

s2 ∪ s
′
2 ⊩ ψ. Because s∪ s

′
is itself the union of these two unions, we have that s∪ s

′
⊩ ϕ∨ψ,

as desired.

Definition 2. M
P ∶= ⟨P (P ) , V P ⟩ where V

P (p) = {X ∈ P(P ) ∶ p ∈ X}.

3 Definability

In this section, we show that disjunction is definable in terms of the other connectives in the
following sense: for every formula in the language including disjunction (L), there is a formula
in the language without disjunction (L−) which is equivalent to it. The proof of this result uses
a normal form theorem, which will be the main result of this section. The normal form result
also yields immediate proofs that the system satisfies (IC) and (WFC). In the next section, we
introduce the concept of uniform definability and prove that ∨ is not uniformly definable.

Our normal form will show that every formula is equivalent to one of the form ϕb ∧ ◊ϕ
1
a ∧

⋯∧ ◊ϕn
a , where ϕb and all of the ϕ

i
a are modal-free formulas. This has an intuitive interpre-

tation: every formula places two types of constraint on an information state: it must entail s
certain piece of information and it must be compatible with certain others.If one thinks of the
information state as an asserter’s belief worlds, then an assertion of ϕ expresses a single belief
and some abeliefs, where an agent abelieves p iff p is compatible with her beliefs. Whence the
subscripts b and a. We now make this precise, showing how to simultaneously generate the
formula to be believed and the set of formulas to be abelieved.

Definition 3. We simultaneously define two translations (⋅)b ∶ L→ LP and (⋅)a ∶ L→ P (LP ):

(p)b = p
(¬ϕ)b = ¬ ((ϕ)b ∧⋀ (ϕ)a)

(ϕ ∧ ψ)b = (ϕ)b ∧ (ψ)b
(ϕ ∨ ψ)b = (ϕ)b ∨ (ψ)b

(◊ϕ)b = ⊤

(p)a = ∅
(¬ϕ)a = ∅

(ϕ ∧ ψ)a = (ϕ)a ∪ (ψ)a
(ϕ ∨ ψ)a = {(ϕ)b ∧ ϕa ∶ ϕa ∈ (ϕ)a} ∪ {(ψ)b ∧ ψa ∶ ψa ∈ (ψ)a}

(◊ϕ)a = {(ϕ)b} ∪ (ϕ)a

So: p expresses belief in p. Similarly, ◊ϕ expresses a trivial belief, but abelief in the belief
expressed by ϕ as well as all of its abeliefs. ϕ∧ψ expresses the belief in the conjunction of the
beliefs expressed by ϕ and by ψ as well as all of the abeliefs expressed by each of ϕ and ψ. Note
that ¬ϕ always expresses only a belief; this resembles the fact that ¬ also removes inquisitivity
in inquisitive semantics. The clause for disjunction will be illuminated in what follows.

Theorem 1 (Normal Form). For every ϕ ∈ L, ϕ ≡ (ϕ)b ∧⋀ {◊ϕa ∶ ϕa ∈ (ϕ)a}.

Proof. By induction. We show only the disjunction case and leave the rest for the reader. So
suppose that ϕ ≡ (ϕ)b∧⋀ {◊ϕa ∶ ϕa ∈ (ϕ)a}, and mutatis mutandis for ψ. Let s⊩ ϕ∨ψ. Then
there is an s1 ⊩ (ϕ)b∧⋀ {◊ϕa ∶ ϕa ∈ (ϕ)a} and an s2 ⊩ (ψ)b∧⋀ {◊ψa ∶ ψa ∈ (ψ)a} such that
s = s1∪s2. Now, by Fact 1, (ϕ)b holds at every world in s1. Since ◊ϕa holds in s1, there is a ϕa

world. Therefore, there is a ϕa∧ϕb world in s1, which is also in s. Therefore, s⊩ ◊ ((ϕ)b ∧ ϕa)
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for each ϕa. The same holds for ψ. Again by Fact 1, we also have that s⊩ (ϕ)b ∨ (ψ)b, since
every world satisfies one of the disjuncts from LP . So, s⊩ (ϕ ∨ ψ)b∧⋀ {◊χa ∶ χa ∈ (ϕ ∨ ψ)a}.
The reader can verify that the reasoning above holds in reverse as well.

Corollary 2. The assertability semantics satisfies (IC): for every ϕ,ψ, χ ∈ LP ,

(ϕ ∧ ◊ψ) ∨ χ⊩ ◊(ϕ ∧ ψ)

Proof. Theorem 1 and Definition 3 yield that (ϕ∧◊ψ)∨χ is equivalent to (⊤∨χ)∧◊(ϕ∧ψ),
which clearly entails ◊(ϕ ∧ ψ).

Corollary 3. The assertability semantics satisfies (WFC): for every ϕ,ψ:

◊ϕ ∨ ◊ψ ≡ ◊ϕ ∧ ◊ψ

We observe two striking features of this equivalence. On the one hand, p∨ q does not entail
◊p ∧ ◊q. This is because the sub-state required for p or for q is allowed to be empty.

5
But

putting a modal under the disjunction forces each sub-state to be non-empty. This allows our
system to preserve classical logic for the propositional fragment while still generating wide-
scope free-choice inferences. On the other hand, we do not get narrow-scope free choice as an
entailment. In other words: ◊(p ∨ q) /⊩ ◊p ∧ ◊q. A counter-example: a state with a single
p ∧ ¬q world. While this might be seen as a problem, we observe that it can be shown that
the standard (recursive) pragmatic explanation of narrow-scope free choice

6
can be re-created

in this system. Whether this is a plausible combination of the interaction between scope and
free-choice licensing will remain for future work.

Proposition 2. For every ϕ ∈ L, there is a ϕ
∗
∈ L− such that ϕ ≡ ϕ

∗
.

Proof. By Theorem 1, ϕ ≡ (ϕ)b ∧ ⋀ {◊ϕa ∶ ϕa ∈ (ϕ)a}. By the two parts of Fact 1, the
propositional formulas (ϕ)b and all of the formulas ϕa can be replaced by disjunction-free
formulas while preserving equivalence.

In other words, Proposition 2 says that ∨ is definable in terms of {¬,∧,◊}. It turns
out, however, that for given formulas ϕ,ψ with a disjunction, the equivalent formulas without
the disjunction may bear no resemblance to each other. For example, p ∨ q is equivalent to
¬ (¬p ∧ ¬q), while ◊p∨◊q is equivalent to ◊p∧◊q, but not to the corresponding De Morgan
formula, since negation removes abeliefs. The question thus arises naturally: is this a defect of
the De Morgan formulas, or is something deeper happening? In the next section, we answer
that something deeper is going on.

4 Uniform Definability

Having thus shown that ∨ is definable, we turn to showing that there is no schematic definition
of the connective. The precise concept behind the idea of a schematic definition is the following.

Definition 4 (Uniform Definability). Let L1,L2 be two languages interpreted in the same
class of models. An n-ary connective ∗ in L1 is uniformly definable in L2 iff there is a formula
ϕ∗ [p1, . . . , pn] ∈ L2 such that for all ψ1, . . . , ψn ∈ L2, ∗ (ψ1, . . . , ψn) ≡ ϕ∗ [p1/ψ1, . . . , pn/ψn].

5
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The proof of the main result hinges on the way in which the various connectives interact
with formulas that are upward-closed, in addition to those that are downward-closed. Note
that the modal let us define such sets of sets, which are not definable in standard inquisitive
semantics. In fact, this failure of downward-closure (also known as persistence) was also one of

the key motivating features of the dynamic approach to epistemic modals.
7

Definition 5. Let X be a set of sets of worlds. X is downward-closed – X is ↓ – iff if s ∈ X
and t ⊆ s, then t ∈ X. X is upward-closed – X is ↑ – iff if s ∈ X and s ⊆ t, then t ∈ X. We
say that X is netural – X is ∼ – iff X is neither ↓ nor ↑.

We will call D ∶= {↑, ↓,∼} the set of directions that a set of sets (or a formula) can
have.Variables like di will range over this set. For a formula ϕ, we say that ϕ is d iff JϕKM
is d for every information model M . Our proof will show that ∨ interacts with upward-closed
formulas differently than any formula defined without it. As an illustration, we note a simple
fact about the disjunction.

Fact 3. If ϕ is ↑, then ϕ ∨ ψ is ↑.

Proof. Suppose ϕ is ↑ and let s be such that s⊩ ϕ∨ψ and let t ⊇ s. We have that s1 ⊩ ϕ and
s2 ⊩ ψ for some s1, s2 such that s = s1 ∪ s2. Because ϕ is ↑, it follows that s1 ∪ (t \ s)⊩ ϕ.
Since s1 ∪ (t \ s) ∪ s2 = s ∪ t \ s = t, we have that t⊩ ϕ ∨ ψ.

Definition 6. Let ϕ [p1, . . . , pn] be a formula.

• ϕ is d-enforcing iff ϕ [p1/ψ1, . . . pn/ψn] is d for every ψ1, . . . , ψn.

• ϕ is d-promoting iff ϕ [p1/ψ1, . . . , pn/ψn] is d if some ψi is d.

We say an n-ary connective ∗ is d-enforcing (resp. d-promoting) if ∗(p1, . . . , pn) is. So, for
example: ◊ is ↑-enforcing and ∨ is ↑-promoting (this is the content of Fact 3).

Our main result will concern the interaction of being ↑-promoting and ↑-enforcing. The
key idea will be that it is only the disjunction that allows a formula to ‘flip’ from being
downward-closed to upward-closed whenever an upward-closed formula is substituted. Special
care will have to be taken to distinguish the disjunction from atoms, which are also (trivially)
↑-promoting. Before proceeding, we record a couple of helper facts.

Fact 4. ϕ is ↑ if and only if ϕb ≡ ⊤

Proof. ⇒: suppose ϕb /≡ ⊤. Then there is a w ∈ M
Pϕb such that {w} /⊩ ϕb, i.e. {w} ⊩ ¬ϕb.

Then, by construction, M
Pϕb ,P(Pϕb

) ⊩ ◊¬ϕb. So, by the epistemic contradiction Fact 2,

M
Pϕb ,P(Pϕb

) /⊩ ϕb. From this, it follows that ϕb is not ↑ since ∅⊩ ϕb. The ⇐ direction is
immediate from Theorem 1.

Fact 5. ϕ ∧ ψ is ↑ if and only if ϕ is ↑ and ψ is ↑.

Proof. By Fact 4, ϕ∧ψ is ↑ iff (ϕ ∧ ψ)b ≡ ⊤. But, by Definition 3, we have ϕb∧ψb ≡ ⊤, which
holds iff ϕb ≡ ⊤ and ψb ≡ ⊤ iff (again by Fact 4) ϕ is ↑ and ψ is ↑.

Theorem 2. Every formula ϕ [p1, . . . , pn] in L− has the following property:

(*) If ϕ is ↑-promoting, then ϕ is ↑-enforcing or uniformly equivalent to a proposition letter.

7
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Proof. We proceed by induction on formulas. Proposition letters clearly satisfy (*), by making
the consequent true. So assume that ϕ1, ϕ2 satisfy (*).

• ¬ϕ1: because ¬ϕ1 is ↓-enforcing, it is not ↑-promoting and so trivially satisfies (*).

• ϕ1 ∧ ϕ2: suppose that ϕ1 ∧ ϕ2 is ↑-promoting, i.e. for all ψ1, . . . , ψn, if some ψi is
↑, then ϕ1 ∧ ϕ2[p1/ψ1, . . . , pn/ψn] is ↑. By Fact 5, both ϕ1[p1/ψ1, . . . , pn/ψn] and
ϕ2[p1/ψ1, . . . , pn/ψn] are also ↑. In other words, ϕ1 and ϕ2 are also ↑-promoting. By
the inductive hypothesis, each one is thus either ↑-enforcing or uniformly equivalent to a
proposition letter.

If both ϕ1 and ϕ2 are ↑-enforcing, then so too is ϕ1 ∧ ϕ2, again by Fact 5.

If ϕ1 and ϕ2 are uniformly equivalent to the same proposition letter – say, pi – then we
also have ϕ1 ∧ ϕ2 is uniformly equivalent to pi.

The only remaining case is when one conjunct – say, ϕ1 – is uniformly equivalent to a
proposition letter (without loss of generality, suppose it is p1), and ϕ2 is not uniformly
equivalent to that same proposition letter. In this case, we have that ϕ1 ∧ ϕ2 is not
uniformly equivalent to a proposition letter. But, for any ↑ formula ψn, we have that
ϕ1∧ϕ2[p1/p1, . . . , pn/ψn] is equivalent to p1∧ϕ2[p1/p1, . . . , pn/ψn]. But this entails p1,
and so is not ↑. Thus, ϕ1 ∧ ϕ2 is not ↑-promoting, contradicting the assumption.

We have thus shown that ϕ1 ∧ ϕ2 satisfies (*).

• ◊ϕ1: because ◊ϕ1 is ↑-enforcing, it satisfies (*).

Theorem 3. ∨ is not uniformly definable in L−.

Proof. p ∨ q is ↑-promoting, but neither ↑-enforcing nor uniformly equivalent to a proposition
letter. Therefore, the previous Theorem shows that no formula can uniformly define it.

5 Adding Inquisitive Disjunction

Because the language L− is relatively weak, it is worth investigating richer fragments. We now
consider the language L⩖, which adds a new symbol ⩖ for inquisitive disjunction. We augment
Definition 1 with the clause from inquisitive semantics:

s⊩ ϕ⩖ ψ iff s⊩ ϕ or s⊩ ψ

In this section, we show that ∨ is once again definable, but must only conjecture that it is
not uniformly definable. The definability result goes as before: we prove a normal form result
which finds, for every formula, an equivalent normal form in which ∨ does not occur. The
normal form has a pleasant character: every formula is equivalent to an inquisitive disjunction
of normal forms in the sense of Theorem 1.

Fact 6. ¬ (ϕ⩖ ψ) ≡ ¬ϕ ∧ ¬ψ
Proof. s ⊩ ¬ (ϕ⩖ ψ) iff {w} /⊩ ϕ⩖ ψ for all w ∈ s. And {w} /⊩ ϕ⩖ ψ iff {w} /⊩ ϕ and
{w} /⊩ ψ. This latter condition holds for every w ∈ s iff s⊩ ¬ϕ ∧ ¬ψ.

Theorem 4 (Normal Form for L⩖). Every formula ϕ ∈ L⩖ is equivalent to a formula ϕ
∗

of
the form

⨈
i

ϕ
i
0 ∧⋀

j

◊ϕ
i
j

where all of the ϕ
i
j ∈ LP .

7
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Proof. The base case – atoms – is trivial; so too is the inquisitive disjunction case. Using
the inductive hypothesis that each subformula has a normal form, we handle the rest of the
connectives as follows.

• ¬ϕ: ¬ (⨈i ϕ
i
0 ∧⋀j ◊ϕ

i
j) is equivalent, by Fact 6, to ⋀i ¬ (ϕi

0 ∧⋀j ◊ϕ
i
j). Using Theo-

rem 1 and the corresponding Definition 3, this is equivalent to ⋀i ¬ (ϕi
0 ∧⋀j ϕ

i
j), of the

desired form.

• ϕ ∧ ψ: note that (⨈i ϕ
i
0 ∧⋀j ◊ϕ

i
j) ∧ (⨈k ψ

k
0 ∧⋀` ◊ψ

k
` ) is equivalent to ⨈i,k ϕ

i
0 ∧

⋀j ◊ϕ
i
j ∧ ψ

k
0 ∧⋀` ◊ψ

k
`

• ϕ ∨ ψ: we have that (⨈i ϕ
i
0 ∧⋀j ◊ϕ

i
j) ∨ (⨈k ψ

k
0 ∧⋀` ◊ψ

k
` ) holds at information state

iff it has two sub-states whose union is the whole state, one of which satisfies the left
inquisitive disjunction, one of which satisfies the right inquisitive disjunction. The reader

can verify that this is therefore equivalent to ⨈i,k (ϕi
0 ∧⋀j ◊ϕ

i
j)∨(ψk

0 ∧⋀` ◊ψ
k
` ) We can

then apply Theorem 1 to each inquisitive disjunct, to get an equivalent formula without
the ∨ scoping over conjunctions, as desired.

• ◊ϕ: note that ◊ distributes over inquisitive disjunction, so that ◊ (⨈i ϕ
i
0 ∧⋀j ◊ϕ

i
j) is

equivalent to ⨈i ◊ (ϕi
0 ∧⋀j ◊ϕ

i
j) which is equivalent to ⨈i ◊ (ϕi

0 ∧⋀j ϕ
i
j) by Theo-

rem 1. The latter is of the desired form.

Corollary 4. ∨ is definable in L−⩖.

Proof. As before, ∨ can be removed from the LP formulas while preserving equivalence.

Conjecture 1. ∨ is not uniformly definable in L−⩖.
8

We note that L⩖ is genuinely expressively richer, because inquisitive disjunctions are not
closed under unions. In fact, we go on to show that L⩖ is in a precise sense maximally expressive.

Proposition 3. ⩖ is not definable in L. A fortiori, it is not uniformly definable.

Proof. p⩖q is not closed under unions: in M
{p,q}

, {p}⊩ p, and {q}⊩ q (and so each supports
p⩖ q as well), but {p, q} /⊩ p⩖ q. By Proposition 1, no formula in L is equivalent to p⩖ q.

Our notion of expressive completeness will run as follows: a language is complete if, for
any finite set of proposition letters, any set of sets built out of those atoms can be defined by
a formula. To make this precise, we introduce the notion of restricting a model to a set of
proposition letters. For a set of letters P , M↾P will identify all worlds in W that agree on all
of the proposition letters in P . In that sense, M↾P will contain all and only what M can see
concerning the atoms in P .

Definition 7. LetM be an information model and P a set of proposition letters. The restriction
of M to P – also called the P -reduct of M – is the model M↾P = ⟨W/ ≡P , VP ⟩ where w ≡P w

′

iff for every p ∈ P , w ∈ V (p) iff w
′
∈ V (p) and VP (p) = {[w]≡P

∶ w ∈ V (p)}. For s ⊆ W , we
define s↾P ∶= {[w]≡P

∶ w ∈ s}. For X ⊆ P(W ), we define X↾P ∶= {s↾P ∶ s ∈ X}.

Definition 8. A language L is expressively complete iff: for every finite set of proposition
letters P , M , X ⊆ P(W ), there is a formula ϕ ∈ L such that JϕKM↾P = X↾P .

8
Compare p. 163 of Ciardelli [2016], where he conjectures that ∨ is not uniformly definable in the system

InqB, which lacks the modal but has a conditional.

8
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Theorem 5. L⩖ is expressively complete.

Proof. Let P be a finite set of proposition letters and s a set of worlds. For w, write pw ∶= p
if w ∈ V (p) and ¬p otherwise. Let ϕw ∶= ⋀p∈P pw. Note that w ≡P w

′
if and only if

ϕw = ϕw′ . Observe that ∣s↾P ∣ ≤ 2
∣P ∣

which, since P is finite, is finite. The reader can verify
that J⋁[w]∈s↾P ϕw ∧ ⋀[w]∈s↾P ◊ϕwK↾P = {s↾P } i.e. that the formula defines exactly the set
s↾P . We call the formula in brackets above ϕs. Now, let X be a set of sets of worlds. As before,
X must be finite. We then have that J⨈s∈X↾P

ϕsK↾P = X↾P which is of the desired form.

This result is quite remarkable. It is known that both inquisitive logic and propositional
dependence logic are expressively complete for downward-closed sets of sets.

9
The above result

shows that adding a possibility modal – in a sense the simplest kind of upward-closed formula
– to inquisitive semantics turns it into an expressively complete language. To put the point in
a slogan: a little bit of modality goes a long way.

6 Conclusion

We introduced an assertability semantics to account for some puzzling data concerning the
interaction of epistemic modals and disjunction. We proved that even though the disjunction
is definable, it is not uniformly definable. This result shows that the standard conception of
expressive power does not capture all that is of interest for a natural language semanticist.
Even if a formal language can express the truth-conditions for every sentence in a fragment
of interest, it can still fail to define all the operations denoted by functional vocabulary of the
relevant fragment. Finally, we showed that the disjunction remains definable in the presence of
inquisitive disjunction, and conjectured that it is still not uniformly definable. We also showed
that adding a modal to inquisitive semantics renders it expressively complete.

Much work remains to be done. First, one would like to settle Conjecture 1. L⩖ would
thus be an expressively complete language which fails to uniformly define a natural connective.
Secondly, one could investigate the disjunction in the setting of weak negation: s ⊩ −ϕ iff
s /⊩ ϕ, as first studied in Punčochář [2015]. It can be shown that both ⩖ and ◊ are uniformly
definable (by −(−p∧−q) and −¬¬−p, respectively) and that {−,∧,¬} is expressively complete.
Nevertheless, we introduce two more conjectures.

Conjecture 2. ∨ is not uniformly definable in {−,∧,¬}.

Conjecture 3. − is not uniformly definable in L⩖.

The latter seems especially plausible, given that −−ϕ ≡ ϕ for every ϕ. Furthermore, does the
uniform definability result extend to more complicated semantic settings? For example, Aloni
[2016], Steinert-Threlkeld [2017], Roelofsen [2017] all move to a bilateral setting – simultaneously
defining what we would call assertability and deniability conditions – in order to to solve certain
problems.

10
Extending the results of this paper to that setting will be non-trivial. Finally,

a thorough investigation of the split disjunction (or close analogues) in both larger fragments
and other frameworks would be fruitful.

9
See Ciardelli [2009] for the former and Yang and Väänänen [2017] for the latter. In particular, {¬,⩖}

is expressively complete for downward-closed sets. Yang [2017] shows that ⩖ is not uniformly definable in
dependence logic.

10
In the system here, ¬¬◊p ≡ p /≡ ◊p, which has the consequence that ¬ □ p ≡ ¬p /≡ ◊¬p. Bilateral systems

can fix this defect, among others.
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Vı́t Punčochář. Weak Negation in Inquisitive Semantics. Journal of Logic, Language and
Information, 24(3):323–355, 2015. doi: 10.1007/s10849-015-9219-2.

Floris Roelofsen. Inquisitive live possibility semantics. In InqBnB Workshop, 2017.

Mandy Simons. Dividing things up: The semantics of or and the modal/or interaction. Natural
Language Semantics, 13(3):271–316, 2005. doi: 10.1007/s11050-004-2900-7.

Shane Steinert-Threlkeld. Communication and Computation: New Questions About Composi-
tionality. Phd dissertation, Stanford University, 2017.

Frank Veltman. Defaults in Update Semantics. Journal of Philosophical Logic, 25(3):221–261,
1996. doi: 10.1007/BF00248150.

Seth Yalcin. Epistemic Modals. Mind, 116(464):983–1026, 2007. doi: 10.1093/mind/fzm983.

Fan Yang. Uniform Definability in Propositional Dependence Logic. The Review of Symbolic
Logic, 10(1):65–79, 2017. doi: 10.1017/S1755020316000459.

Fan Yang and Jouko Väänänen. Propositional Team Logics. Annals of Pure and Applied Logic,
168(7):1406–1441, 2017. doi: 10.1016/j.apal.2017.01.007.

Thomas Ede Zimmermann. Free Choice Disjunction and Epistemic Possibility. Natural Lan-
guage Semantics, 8(4):255–290, 2000. doi: 10.1023/A:1011255819284.

10


	Some Puzzles of Epistemic Modals and Disjunction
	Assertability Semantics
	Definability
	Uniform Definability
	Adding Inquisitive Disjunction
	Conclusion

