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INTRODUCTION 

Recent developments in the semantics of natural language seem to lead 
to a genuine synthesis of ideas from linguistics and logic, producing 
novel concepts and questions of interest to both parent disciplines. This 
book is a collection of essays on such new topics, which have arisen 
over the past few years. 

Taking a broad view, developments in formal semantics over the 
past decade can be seen as follows. At the beginning stands Montague's 
pioneering work, showing how a rigorous semantics can be given for 
complete fragments of natural language by creating a suitable fit 
between syntactic categories and semantic types. This very enterprise 
already dispelled entrenched prejudices concerning the separation of 
linguistics and logic. Having seen the light, however, there is no reason 
at all to stick to the letter of Montague's proposals, which are often 
debatable. Subsequently, then, many improvements have been made 
upon virtually every aspect of the enterprise. More sophisticated 
grammars have been inserted (lately, lexical-functional grammar and 
generalized phrase structure grammar), more sensitive model structures 
have been developed (lately, 'partial' rather than 'total' in their com
position), and even the mechanism of interpretation itself may be 
fine-tuned more delicately, using various forms of 'representations' 
mediating between linguistic items and semantic reality. In addition to 
all these refinements of the semantic format, descriptive coverage has 
extended considerably. Nowadays, we possess valuable (though by no 
means conclusive) formal semantic accounts of a wide variety of 
linguistic phenomena beyond Montague's original samples - in partic
ular, many of them independent from the intensional preoccupations 
which are the philosopher's burden. 

There is also another type of development. Exhaustive description of 
fragments is useful, all the more so because of increasing contacts with 
computer science, trying to implement the above theories computa
tionally. But, there remains the more global aim of understanding broad 
patterns in natural language, both within specific languages and across 
different ones. At this level too, logic and linguistics can meet and 
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viii INTRODUCTION 

interact. Notably, in between general concerns of category/type fit and 
detailed semantic description of single lexical items, one can study the 
behaviour of various specific categories of expression in their entirety. 
For instance, the theory of 'generalized quantifiers' has inspired a 
logico-linguistic investigation of the category of determiner expressions 
in natural language, attempting to find out precisely the range of 
admissible semantic denotations for these expressions. Montague 
Grammar would allow, in principle, just any denotation of the appro
priate type; but the above research has produced powerful and natural 
constraints. Although this goes beyond mere fit of syntactic category 
and semantic type, such an investigation does not go into complete 
lexical detail about any specific determiner expression. It is just this 
middle road which gives one a handle on important questions about 
natural language which have seemed hitherto rather metaphysical than 
scientific. For instance, given certain independently motivated con
straints, which of the semantic possibilities left are actually realized by 
natural language expressions? If all of them are, this may be interpreted 
as the statement that natural language attains some optimum of expres
sibility - and we have realized part of the philosopher's dream, to 
explain why there are the things there are. 

By itself, the generalized quantifier framework is just a convenient 
semantic format for determiner and quantifier expressions. But, it has 
proven very fruitful both as a medium of semantic description and a 
vehicle for semantic theorizing. The latter will be demonstrated in the 
first six chapters of this book. 

Both general and special model-theoretic constraints are studied for 
determiners in Chapter 1, leading to several definability theorems. The 
notions and proof techniques obtained in this way are then used to 
evaluate recently proposed 'semantic universals', i.e., general regular
ities, of determiner meanings across all human languages. For instance, 
natural language contains 'systematic gaps': determiners with certain 
combinations of features are missing - and we want to understand why. 
(Thus, with one bold leap of the imagination, we double traditional 
areas of research, studying both what does and what does not occur in 
natural .language.) Among the determiners, there is a distinguished class 
of 'logical' items, and such quantifiers are the topic of Chapter 2. Here, 
new themes arise for logical research. For instance, various intuitions of 
'logicality' are developed, leading to more sophisticated hierarchies of 
logical constants than the usual set. Moreover, earlier conditions on 
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determiner denotations can now be re-interpreted as possible patterns 
of inference - and we arrive at a study of 'inverse logic', classifying 
possible quantifiers validating given clusters of inferences. This, of 
course, is the mirror image of the usual Aristotelean mode of logical 
research, which describes inferential behaviour of already given quanti
fiers. The notions and results of the first two chapters can be general
ized to arbitrary types of expression, in line with current tendencies to 
take a broader cross-categorial view of linguistic denotations. This is the 
theme of Chapter 3, which investigates the various manifestations of 
similar or related constraints across such categories as determiners, 
noun phrases, adjectives and connectives. 

Up till this point, only extensional denotations have been considered. 
But, our type of investigation can also be transferred to an intensional 
setting. Chapter 4 demonstrates this for the case of conditionals, viewed 
as generalized quantifiers involving sets of possible worlds for their 
antecedents and consequents. One conspicuous topic here is to develop 
general intuitions of 'conditionality' in a more systematic fashion than is 
usually done in philosophical logic. Moreover, some unity of perspec
tive results for the multitude of existing 'conditional logics' infesting the 
latter discipline. Afterwards, a similar road takes us into the traditional 
heartland of intensionality: the area of tense and modality. Thus, in 
Chapter 5, a reasonable hierarchy of denotational constraints provides 
a new classification of linguistic tenses. 

Finally, in Chapter 6, another aspect of this enterprise is highlighted. 
These latter-day semantic trends are actually reminiscent of traditional 
logic, in particular the Syllogistic. Some connections between the two 
are explored, and especially, an outline is given of a natural logic, being 
a system of logical inference based directly on grammatical form, 
without any artificially created 'logical form' level. 

It should be stressed again that these are theoretical questions, be it 
often with a direct descriptive motivation. Given the results obtained in 
these chapters, it seems that the present simple generalized quantifier 
perspective represents some optimum on the curve of compromises 
between faithful description and elegant general theory of natural 
language. 

Next, the book turns to questions concerning the mechanics of 
interpretation. An interest in an account of semantic interpretability 
independent from syntactic grammaticality leads us to consider a more 
flexible categorial grammar allowing various rules of type change for 
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expressions, as required by the varying needs of interpretation. Such a 
system of rules is gaining attention from a growing community of 
linguists these days, reviving the old Ajdukiewicz/Bar-Hillel framework. 
In particular, in Chapter 7, we shall provide a semantics for a system of 
type change rules essentially due to Lambek in the fifties, which has had 
to wait for recognition until the transformational juggernaut had passed. 

Then, in Chapter 8, another more dynamic aspect of interpretation is 
considered. There is an attractive, though slightly marginal folklore idea 
that certain types of expression should be given 'procedural' denota
tions, i.e., procedures for computing suitable values. For the special 
case of quantifiers, and later on for other categories too, we find 
semantic automata doing just this. Surprising analogies then come to 
light with the Chomsky Hierarchy of grammars and automata, both in 
its coarse and its fine-structure. Thus, what used to be viewed as a 
stronghold of pure syntax, now becomes an asset of semantics too. By 
this road, the usual concerns of learnability and computability then also 
enter the semantic realm. 

Finally, we ascend to our highest level of abstraction, asking various 
methodological questions about the semantic enterprise - using some 
of the apparatus of contemporary philosophy of science. As it turns 
out, semantic theories may be viewed as empirical theories in a 
standard sense, and Chapter 9 shows how central questions in the 
philosophy of science correspond to standard logical concerns. Notably, 
the usual industry of proving completeness theorems can now be 
motivated as a search for 'eliminability' of theoretical terms, such as 
accessibility or similarity relations in possible worlds semantics. Still, 
there arises a Popperian worry, viz. that the latter research program 
might be 'irrefutable', in the sense of being able to semanticize any kind 
of data. Fortunately, an example can be presented which is provably 
beyond the resources of the possible worlds machinery. This result 
has a wider significance: similar suspicions of 'infallible success', and 
hence lack of real explanatory achievement, surround the Montagovian 
paradigm. 

More systematically, Chapter 10 is devoted to an ascending ladder 
of goals for a semantic theory, viz. providing a faithful (compositional) 
account of denotations, accounting for given (non-)inferences, suggest
ing global regularities in languages and even semantic universals. A 
logic of semantics will then consist of a multitude of questions con
cerning the prospects at each level; several examples of which are given. 
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Notably, there remains a need for a better understanding of linguistic 
'information processing', enabling us to make more concrete logical 
sense of various intuitions of 'stability', 'minimal complexity' and 
'efficiency'. And so, we have arrived at the Last Questions concerning 
natural language, which all discerning semanticists share and treasure. 

The various chapters in this book are revised and expanded versions 
of a sequence of papers, many of which changed beyond recognition. 
I would like to thank the following institutions for their permission to 
use this material. D. Reidel Publishing Co. for 'Determiners and Logic' 
(Linguistics and Philosophy 6, 1983, 447-478) [Chapter 1], as well 
as 'Foundations of Conditional Logic' (Journal of Philosophical Logic 
13, 1984, 303-349) [Chapter 4] - The Association of Symbolic 
Logic for 'Questions about Quantifiers' (Journal of Symbolic Logic 49, 
1984, 443-466) [Chapter 2] - North-Holland Publishing Co. for 'A 
Linguistic Turn: New Directions in Logic' (in P. Weingartner, ed., 
Proceedings of the 7th International Congress in Logic, Methodology 
and Philosophy of Science, Salzburg 1983, Amsterdam, 1986) [Chapters 
3, 6] - The Center for the Study of Language and Information for 'A 
Manual of Intensional Logic' (CSLI Lecture Notes 1, Stanford, 1985) 
[Chapter 5] - Foris Publishing Co. for 'Themes from a Workshop' 
(in J. van Benthem and A. ter Meulen, eds., Generalized Quantifiers 
in Natural Language, GRASS series 4, Dordrecht, 1985, 161-169) 
[Chapters 3, 6], 'Semantic Automata' (in J. Groenendijk, D. de Jongh 
and M. Stokhof, eds., Information, Interpretation and Inference, 
GRASS series 5, Dordrecht, 1986) [Chapter 8] as well as 'The Logic of 
Semantics' (in F. Landman and F. Veltman, eds., Varieties of Formal 
Semantics, GRASS series 3, Dordrecht, 1984, 55-80) [Chapter 10] -
John Benjamin Co. for 'The Semantics of Variety in Categorial Gram
mar' (in J. van Benthem, W. Buszkowski and W. Marciszewski, eds., 
Categorial Grammar, Amsterdam, 1986) [Chapter 7] - and the Polish 
Academy of Sciences for 'Logical Semantics as an Empirical Science' 
(Studia Logica 42, 1983, 299-313) [Chapter 9] as well as 'Possible 
Worlds Semantics: A Research Program that Cannot Fail?' (Studia 
Logica 43,1984,379-393) [Chapter ~]. 

And finally, I would like to thank all my colleagues in the Groningen 
circle of logic and linguistics - in our venerable free city at the 
cross-roads of semantic traffic from Poland, Scandinavia, America and 
Holland. 
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CHAPTER 1 

DETERMINERS 

A small group of linguistic categories forms the backbone of elementary 
sentence formation, as summed up in the following rewrite rules: 

S ~ NPVP 
NP~PN 

NP ~ DetN; 

involving the notions of ~entence, Noun £hrase, Yerb £rase, £roper 
Name, Determiner and £ommon Noun. In what follows, we shall focus 
on the Noun Phrases in this scheme. Some of their parts seem to be 
'interpretatively free', in the sense of allowing any available denotation 
in a model. Thus, in principle, proper names can denote arbitrary 
individuals, and common nouns can assume arbitrary extension sets of 
individuals. In contrast, determiner expressions (,determiners') form a 
more structured class, which is reflected in certain constraints on their 
semantics. Thus, the latter category of expression has been at the centre 
of attention in recent studies of possible denotations for natural 
language items. A related, more intrinsic reason is this: determiners 
provide the 'conceptual glue' with which we express basic relations 
between predicates (denotationally: [Det] ([N], [VPJ)). Accordingly, 
determiners will be the first topic in this book, though by no means the 
last. 

1.1. DETERMINERS IN LANGUAGE 

To begin with, here are some actual determiner expressions. An 
extensive list for the case of English may be found in Keenan and Stavi 
(1982), both simplex (all, some, two, both, most, few, enough, which, 
etcetera) and complex. The latter comprise rather tightly knit com
pounds such as almost all, all but two, at least three, the jive, more than 
one, some of the four, too many, but also broader categorial com
binations, notably 

3 



4 

- Boolean compounds: 

- Adjectival restrictions: 
- Possessives: 

CHAPTER 1 

Det => not Det 

Det => Det { ~;d} Det 

Det => Det Adj 
Det => NP 's 

(not all) 

(all or some) 

(no sane) 
(some girl's) 

Actually, even such an empirical list already incorporates decisions 
of classification. For instance, it has also been proposed to analyze, e.g., 
two, many as adjectives rather than (or: as well as) determiners. Also, 
adjectival restriction is not equally acceptable to all linguistic observers. 
Such issues will not be investigated here. In any case, the general drift 
of our study tolerates a certain latitude. 

Another syntactic restriction to be made was already implicit in the 
above. In accordance with the earlier rules, we shall focus on such 
schemata as (all X) Y, or rather the non-hierarchical all XY. Occur
rences of determiners in non-SUbject position, such as direct object 
NP's or so-called 'floated quantifiers' (the boys all volunteered) will be 
largely ignored, except for some remarks at the end of this chapter. 
Generalization to these cases seems straightforward. 

Also, the above expressions show varieties of meaning, not all of 
which can be studied here. In particular, we shall restrict attention to 
determiners that are 

- total (no presupposition-bearing cases, as with the or both); 
- extensional (no intensional phenomena, as in all alleged); and 
- discrete or countable (no continuous uses, as in some, much, all 

tea). 
None of these are essential limitations though, and some will be 

reconsidered in later chapters. 
Another semantic issue down-played in our formulation is the 

variation of singular and plural forms for the predicates X, Y. We shall 
read the latter as standing for collections of individuals. (A semantics 
for plurals will be touched upon in Section 2.10., however.) But 
eventually, one will also want a systematic account of the semantic 
parallels and differences in such pairs as all birds/every bird, many 
birds/many a bird, some birds/some bird, no birds/no bird. It may not 
even be possible to handle this purely denotationally in the end, and 
some more 'representational' account may have to be super-imposed, in 
the style of Kamp (1981 ). 

Let us now take a more systematic view of syntactic constructions 
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creating new determiners. For a general setting, we use a categorial 
grammar, with basic types e (entity) and t (truth value) and functional 
combinations (a, b). In chapters 3, 7, this system will be studied in 
much more detail. 

Determiners combine with (simple or complex) nouns to form noun 
phrases; the semantic net effect of which is displayed in the category 
assignment 

« e, t), « e, t), t)); or (p, (p, t)), 

where p = (e, t) stands for 'property'. Of the various possible questions, 
here is the most obvious one. Which categories can combine with deter
miners to form new determiners? More technically, what are the 
categorial solutions to the equation 

x + det= det? 

In strict categorial grammar, only one type of solution is forthcoming, 
most obviously x = (det, det). This accounts for the above Boolean 
negation on determiners. A little higher up, conjunction and disjunction 
may be accounted for in the same manner. But, one also wants to 
consider solutions where the left-most 'del' represents the function 
rather than the argument. 

Now, any more realistic (and interesting) categorial grammar will 
allow something like the expansion rule of Geach (1972), combining 

(a, b) + (b, c) to (a, c). 

Such more flexible grammars will be studied in Chapter 7. In the 
present case, this gives us the additional solution 

(p, p) + (p, (p, t)) = (p, (p, t)). 

As (p, p) is the category of adjectives, this accounts for the above 
adjectival restriction. 

1.2. DETERMINERS AND GENERALIZED QUANTIFIERS 

The well-known semantic treatment of noun phrases and determiners in 
Montague Grammar implicitly presupposes the logical 'generalized 
quantifiers' proposed in Mostowski (1957). The importance of the 
latter notion for natural language was brought out explicitly in Barwise 
and Cooper (1981). Basically, the idea is to let a noun phrase DX (all 
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women, most children, no men) refer to a set of sets of individuals, viz. 
the denotations of those Y for which (DX) Y holds. Thus, e.g., in a fixed 
model with universe E, 

all X denotes 
most X denotes 
no X denotes 

{A ~ EI[X] ~ A}, 
{A ~ EII[X] () AI> I[X] -AI}, 
{A ~ E I [X] () A = 0}; 

where [X] is the extension of the predicate X in the model. This point 
of view permits a uniform treatment of the subject/predicate form that 
pervades natural language. 

Such denotations of noun phrases exhibit familiar mathematical 
structures. For instance, all X produces 'filters', and no X 'ideals'. The 
denotation of most X is neither; but it is still monotone, in the sense of 
being closed under supersets. Mere closure under subsets occurs too, 
witness few x. These structural properties are at present being used in 
organizing linguistic observations, and formulating hypotheses about 
them. In addition to the above-mentioned paper, one may mention the 
work of Ladusaw (1979) and Zwarts (1981) on 'negative polarity' and 
'conjunction reduction'. In the course of such originally descriptive 
studies, several methodological issues of a wider logical interest arose, 
and these have inspired the present investigation. 

In order to present these issues, we shift the above perspective, 
placing the emphasis on determiners per se - viewed as denoting 
relations D between sets of individuals. Thus, 

DAB rather than B E DA. 

Even more generally, determiners pick out a binary relation among sets 
of individuals on arbitrary universes E, thus 

DEAB. 

We shall picture this in the Venn Diagrams of classical logic (see Figure 
1). 

E 

Fig. 1. 
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This point of view is not that of Mostowski but is related to the more 
general proposals in Lindstrom (1966), who introduced binary rela
tions between arbitrary predicates (not just unary A, B). 

A point of notation. We shall write DXY when thinking of a 
determiner expression followed by suitable linguistic items. When 
thinking about a determiner relation with sets (denotations for these 
items), we will write DAB. This abuse of notation is to be preferred to 
an abundance of denotation brackets. 

The parameter E has its uses for context-dependent determiners. 
For instance, one of the meanings of many AB is that the relative 
frequency of B in A exceeds that of B in the whole universe E 
('relatively many'). Another example is the compound determiner all 
tall, whose adjective may vary its denotation depending on the 'refer
ence group' E. 

Finally, an important decision remains to be made about these 
universes E. Our general feeling is that natural language requires the 
use of finite models only. Infinite models only arise (out of the former) 
through philosophical or scientific reflection. This restriction still leaves 
us a 'potential infinity' of arbitrarily large finite universes, with which to 
model linguistic phenomena - without sailing away into the 'actual 
infinity' of higher set theory. Perhaps, eventually, an actual infinity may 
be admitted, through reifying certain limits out of the finite realm -
provided that some specific semantic motivation can be given. This 
strategy, which tends to make semantic modelling a lot more interest
ing, has turned out to be a bit of a shock to many addicts of Cantor's 
Paradise. For these, it should be pointed out that only few results in this 
book depend essentially on the finiteness restriction - and we shall 
occasionally note possible 'infinite' generalizations. 

1.3. THE SEMANTIC RANGE OF DETERMINERS: 

CONSERVA TIVITY 

Which binary relations on a universe E are to count as admissible 
determiner denotations? There are two strategies of description here. 
One approaches from the outside, so to speak, accumulating global 
conditions, so as to fit to size. The other builds up from the inside, 
starting from evident cases, and giving an inductive generating proce
dure. We start with the former. 
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Global Conditions 

One recurrent constraint accounts for the privileged role of the first 
argument in a determiner statement: it 'sets the stage': 

CONS ( Conservativity) 

There is even a familiar idea that the common noun of an NP 
restricts the domain of evaluation for the determiner. Its full force is to 
declare everything outside of A irrelevant: 

CONS+ D£AB iff DAA(B (') A). 

The latter is a 'cross-contextual' constraint, relating various uni
verses. Upon closer inspection, it combines Conservativity with a 
principle of 'context-neutrality' which may be stated separately: 

EXT if A, B ~ E ~ E', then 
D£AB iff D£.AB ( Extension) 

The latter principle holds for most determiners, exceptions being the 
above context-dependent cases. 

In a sense, Extension plus Conservativity express the intuitive notion 
of 'aboutness'. Being 'about' A means remaining true for A, no matter 
how its context changes. For instance, in the famous 'Paradox of the 
Ravens' in the philosophy of science, All ravens are black is a rule 
about ravens, whereas its logical equivalent All non-black things are 
non-ravens is not about ravens in this sense, not being context-neutral. 

Most of the proposed counter-examples to Conservativity have 
remained controversial, witness the following three cases. Only willows 
weep is a contingent statement, non-equivalent to the tautology only 
willows are weeping willows. But then, it may be argued that only is an 
adverb rather than a determiner, because of its syntactic distribution. 
Another case has occurred before: in the 'relatively'-reading, many girls 
are giggling may be false, while many girls are giggling girls is true. But 
here again, a different categorization has been proposed for indepen
dent linguistic reasons. (E.g., many is an adjective in Hoeksema, 1982.) 
Finally, there are intensional counter-examples. All alleged males are 
females may be true, even though all alleged males are male females 
is an analytic falsehood. But then, such intensional locutions call for an 
enriched semantic picture anyway, having families of possible universes 
- where an appropriate generalization of Conservativity will in fact be 
forthcoming. Thus, we shall stick with such prime examples as the 
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equivalence between all Dutch are morose and all Dutch are morose 
Dutch. 

Further general constraints on determiner denotations have been 
difficult to find. One candidate, perhaps, is the feeling that also the 
second argument of a determiner relation should 'matter': 

VAR if A is non-empty, then there exist B, B' ~ E 
such that DEAB, not DEAB' (Variety) 

Simplex determiners seem to satisfy this criterion, except for numerals, 
such as two in a universe with one single object. Complex cases also 
provide counter-examples. Accordingly, several weaker variants of 
Variety have been proposed (cf. Westerstahl, 1982). Nevertheless, we 
shall often use Variety to obtain a more surveyable field when proving 
results. Lifting this restriction is usually a matter of mere additional 
combinatorics. And in fact, further conditions, whether generally valid 
or not, still carve out interesting special classes of determiners, as will 
be seen below. 

For the moment we are left with CONS as the only really obvious 
constraint on determiner denotations. In this connection, it is worth 
noting that this condition is preserved by the main closure conditions 
of Section 1.3., viz. Boolean combination and adjectival restriction 
(at least, with respect to intersective adjectives, obeying the scheme 
[Adj N] = [AdH II [N]). Such behaviour is not always displayed by 
V AR, or other special purpose conditions. Indeed, Keenan and Stavi 
have proposed a 'semantic universal' to the effect that 

all human languages have only conservative determiners. 

That one can do no better than this, in a sense, is the contention of the 
next section. 

How much of a constraint is Conservativity? One way of answering 
such a question is by means of actual counting. On a fixed universe E, 
with n elements, there are 24n generalized quantifier relations, being all 
sets of ordered couples of subsets of E. To explain the number 4, one 
views these couples (A, B) as functions from individuals in E to 
couples of truth values: yes/no (in A), yes/no (in B). Now, conservative 
determiners are completely specified 'by their pairs (A, B) with B ~ A, 
as is easily established. So, the value combination 'no', 'yes' drops out, 
and only three possibilities remain. Hence, there are 23n conservative 
determiner denotations - a considerable reduction in size, though not 
in order of magnitude. 
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Inductive Conditions 

Now, let us start from the inside, generating admissible determiner 
denotations. That the two principles of description coincide in the end 
is expressed in the main result of Keenan and Stavi (1982), of which a 
simplified, non-algebraic proof is given here. 

Fixing some universe E, we start from some initial class of basic 
determiner relations, here: just inclusion (all) and overlap (some), 
allowing some reasonable constructions, here: Boolean combination 
and restriction to intersective adjectives. These generators plus opera
tions create a class of determiner relations D-GEN. In a meandering 
fashion, using a different principle of generation, Keenan and Stavi 
prove their 'Definability Theorem': 

CONS = D-GEN. 

What does this equation mean? The number of conservative deter
miners increases with the size of E, as we have seen. Therefore, one 
cannot expect definitions for all determiners from some fixed finite 
stock, as its Boolean compounds will still be finite in number, up to 
logical equivalence. Thus, any definition obtained is bound to depend 
essentially on the universe E. Indeed, by comparing the counting 
formula for conservative determiners with a suitable one for Boolean 
definition from a fixed set of parameters (involving common noun and 
adjective denotations), Keenan and Stavi have also shown that, in the 
long run, the former will outrun the latter. Therefore, no global version 
of the Definability Theorem is possible. 

Accordingly, we stay within a fixed E. Assume that individuals have 
been introduced only when they are distinguishable from all others 
already present in E through predicates definable in the language. By 
standard reasoning it follows that every set of individuals will be 
definable as the denotation of some (possibly complex) predicate of the 
language. Thus, every subset of E has a name in our language. Under 
these circumstances, we have the above identity, as will be shown now. 

First, inclusion and overlap are indeed conservative relations, and 
the latter property is preserved under Boolean operations and intersec
tive adjectives. E.g., if D is conservative on E, then, for any fixed set C, 
DE(C II A)B iff DdC II A)(C II A II B) iff DdC II A)(A II B), 
since (C II A) II (A II B) = C II A II B. 

Conversely, let DE be an arbitrary conservative relation. Observe 
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first that D£AB iff D£A(B n A) iff 3X ~ A(DEAX & X = B n A). 
Therefore, 

D£AB ~ V (A = X & B n A = Y), 
DlXY 
Y<;;; x 

and the problem is reduced to defining the latter conjunction in 
admissible terms. Here is one solution: take the conjunction of 

- all (Y n A, B) 
- no (- Y n A, B) 
-all(-XnA,B) 
- some or not all ({ x} n A, B) (for all x EX). 

Explanation: To begin with, note how this may be read as one long 
determiner, applied to arbitrary A, B. As for particulars, the relativiza
tions are allowed since all sets mentioned (Y, - Y, -X, {x} (x EX)) 
were definable, while no merely abbreviates the admissible combination 
not some. Now, the first two clauses express that B n A = Y n A. In 
combination with the third, and the fact that Y ~ X, this yields A ~ X. 
Finally, by 'brute force', the last clauses ensure that X ~ A. (B is not 
really being used here, as the disjunction amounts to stating the fact 
that {x} and A intersect.) D 

The theorem should not be read as stronger than it is. For instance, 
although most XY (being conservative) has now been shown to be 
locally definable in terms of some, all, this is a matter of mere enumera
tion. After all, we know that no global first-order definition for most 
exists; witness Chapter 2. Still, one interesting interpretation of the 
theorem remains ('effability'). Under optimal local circumstances (when 
no anonymous individuals inhabit the universe), natural language has 
the resources for expressing every possible determiner denotation. 

1.4. SPECIAL CONDITIONS: MONOTONICITY 

Even without being generally valid, further conditions on determiners 
may be useful, both descriptively and theoretically. One prominent 
example is the following 

if DEAB and B ~ B', then D£AB' (Mono tonicity) 

Monotone determiners have a certain stability: when DEAB holds, even 
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upon the basis of partial knowledge B about the denotation of the 
second predicate, this statement will remain true as more members of 
that denotation are discovered. Both reality and our information about 
it are in constant flux, but our language has to provide some more 
stable means of description. Hence, it is no surprise to find that basic 
determiners such as all, most, some are monotone. 

Next, on the above scheme, there may be monotonicity in the left 
argument as well: 

if D£AB and A ~ A', then D£A'B. 

This is the 'Persistence' of Barwise and Cooper (1981); valid for some, 
but not, e.g., for all or most. Moreover, these 'upward' versions also 
have obvious downward duals. Notably, the four resulting types of 
Double Monotonicity are exemplified in the traditional logical 'Square 
of Opposition'. With an obvious notation: 

~allt t somet 

Inal>< lnO/ aliI 

And this connection is quite intimate: 

THEOREM. The four determiners in the Square of Opposition are 
precisely those satisfying Variety and Double Monotonicity. 

Proof Here is a sample argument. Suppose that D is doubly mono
tone, of type ~MON~. Then D must be the relation of disjointness (no): 

- If A n B = 0, then choose some non-empty A' ;;2 A. For some 
X, DA' X (V AR), and hence DA0 UMONi). Therefore also, DAB 
(CONS). 

- If DAB, then D(A n B)B (~MON), and so D(A n B)(A n B) 
(CONS). By MON~ then, D(A n B)X for all X, and hence A n B = 0 
(VAR).D 

How restrictive is, say, upward Monotonicity by itself? Again, such a 
question may be approached by means of counting denotations. In 
Thijsse (1985), upper and lower bounds are obtained for the number of 
CONS, MONt determiners (there are more than 22n). An exact solution 
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is still open - as it has been ever since Dedekind posed an essentially 
equivalent combinatorial question in the last century. 

Unlike Conservativity, Monotonicity is not preserved under Boolean 
operations. For instance, all or no is not monotone. And even a simplex 
determiner such as one is not monotone either way. Yet, the latter does 
satisfy the weaker condition of Continuity: 

if DEABI, D EAB2, BI S;;;; B S;;;; B2, then DEAB. 

Essentially the following semantic universal may be found in Barwise 
and Cooper (1981): 

every simplex determiner in natural language is continuous. 

Note that the continuous determiners are exactly the conjunctions of an 
upward and a downward monotone one. (For instance, one is at least 
one and at most one. Cf. Thijsse, 1983.) 

As with Monotonicity, Continuity can also occur in the left-hand 
argument: 

if DEAIB, D EA2B, Al S;;;; A S;;;; A 2, then DEAB. 

For instance, one is both right- and left-continuous. But, e.g., most is 
neither left-monotone nor left-continuous. A counter-example is the 
case of Al = {1}, A = {1, 2}, A2 = {1, 2, 3} and B = {1, 3}. Due to the 
privileged role of the argument A, the left-hand versions of Mono
tonicity and Continuity are stronger than their right-hand ones - a 
phenomenon to be studied in Chapter 2. 

Thus, special purpose conditions provide interesting classifications of 
determiners. 

1.5. INFERENTIAL PATTERNS 

The relational view of determiners invites the introduction of well
known conditions on binary relations from other areas of semantics and 
mathematics. For instance, all is reflexive and transitive, some and no 
are symmetric, not all is connected, etc. Such relational conditions may 
interact with the earlier notions: 

THEOREM. All reflexive transitive determiners have Monotonicity 
type~MONt. 

Proof (cf. Zwarts, 1981). ~MON: If DEAB and A' S;;;; A, then 
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D£A'A' (reflexivity), D£A'A (CONS), D£A'B (transitivity). MONt: If 
D£ABand B ~ B', then likewise, D£BB, D£BB', D£AB'.D 

Incidentally, at most one X is not Y is a ~MONt determiner which fails 
to be transitive. 

Another kind of example is the following. In a study of 'definite 
determiners', Higginbotham has introduced so-called "properties of 
concepts": determiners only dependent on the intersection of their 
arguments. Formally, 

if U (I V= A (I B, then D£ UV iff D£AB. 

Immediate consequences are Conservativity as well as symmetry for 
D. But also conversely, the latter two conditions add up to being a 
property of concepts; through their consequence 

D£UV iff DdU (I V)(U (I V), for all U, V. 

Proof D£UViff D£U(U (I V) iff D£(U (I V)Uiff D£(U (I V)(U (I V). 
o 

A deeper interpretation of such relational conditions is possible. Essen
tially, they express patterns of inference, which mayor may not be 
validated by certain determiners. Thus, we are now classifying deter
miners by their inferential potential. 

A more systematic survey of possibly relevant relational conditions, 
then, starts with a catalogue of possible inference schemata. For 
instance, among the two-premise syllogisms, prominent examples are 

DXY DYZ DXY DYZ DXY DXZ 
DXZ DZX DYZ 

(transitivity) (circularity) (euclidity) 

Then, one may ask for a classification of all possibilities. 
Up till now, definite answers have only been obtained for the rather 

more special class of logical determiners ('quantifiers') to be introduced 
in the next section. Here is one example, taken from Westerstahl 
(1984): 

THEOREM. The transitive reflexive quantifiers are precisely those of 
the forms 



DETERMINERS 15 

there are at most nX, or all X are Y (n= 0,1,2, ... ) 

Thus, essentially, reflexivity and transitivity are characteristic properties 
of the universal quantifier. 

Some potential patterns of inference are not even realized at all; 
witness the following result from Chapter 2: 

THEOREM. There are no circular quantifiers, except the empty and 
the universal one. 

Thus, natural language provides no vehicle for muddle-headed reasoning. 
Likewise, there are no euclidean quantifiers (a conjecture in Zwarts, 

1981, proved in Van Benthem, 1984d). For classifications of other 
cases, notably that of symmetric quantifiers, see Westerstahl (1984). 

A more serious interpretation for non-existence results like the 
above is that they provide an explanation for observed 'systematic 
gaps' in natural language; a phenomenon noted in Barwise and Cooper 
(1981) and Zwarts (1981). For instance, one semantic universal pro
posed in the latter paper is that 

no human language has asymmetric determiners. 

At least for quantifiers, there is logical, rather than empirical necessity 
behind this observation: see Section 1.6. below. 

To conclude, it should be noted that there are other relevant 
patterns of inference than purely relational ones. For instance, upward 
Monotonicity itself amounts to the step 

'from DXYto DX(Y or Z)' 

or equivalently 

'from DX( Y and Z) to DXY'. 

These are cases of interaction between determiners and connectives. 
This richer logic will be taken up in Chapter 2. 

1.6. LOGICAL DETERMINERS 

Some of the basic determiners are precisely the central logical constants 
called 'quantifiers'. Which additional constraints set these apart from 
the family of all determiners? One general intuition, upon which most 
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authors seem to agree, is 'topic-neutrality', or insensitivity to individual 
traits of objects: 

QUANT D£AB depends only on the numbers of individuals in 
A, A n B, Band E. (Quantity) 

Thus, the numbers a, b, c, e in Figure 2 determine whether D£AB 
holds. 

E 
e 

A 

Fig. 2. 

Here are some examples in this arithmetical setting: 

all: a = 0, some: b~ 0, no: b = 0, all but one: a = 1, most: b > a, 
many.: b> n(e) (where n is some norm function), manY2: 
b/(a + b) > (b + c)/(b + c + a + e)(cf. Section 1.3.). 

A detailed study of the quantifiers satisfying CONS, EXT and QUANT 
will be found in Chapter 2. For the moment, we just state how, on a 
universe with n elements, Quantity reduces the number of conservative 
relations by an order of magnitude: only 2(n+ 2)(n+ .)/2 remain. 

In addition to topic-neutrality, there are further broad intuitions 
concerning logicality. These seem to come in two strands. 

Graduality. When the set A changes a little (resulting in a truth value 
change for D£AB), the original truth value may be restored by means 
of some small corresponding change in B. This informal idea motivates 
various versions of the Continuity principle introduced in Section 1.4. 

Uniformity. The behaviour of D should be regular ('the same') across 
all universes. 

Actually, semanticists often speak about 'the model' for a language; 
and one might wish to implement the above intuition in some 'generic 
model', where a determiner receives its typical interpretation, once and 
for all. Lacking such a structure, we shall eventually present various 
formulations of Uniformity in terms of tables of behaviour across all 
finite universes (Chapter 2). As it turns out, the above informal idea 
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then dissolves into a hierarchy of possibilities: how much uniformity we 
can 'see' depends on our conceptual apparatus (or, if one prefers, our 
metalanguage, where denotations are defined). Even without further 
technical details, the typical kind of result to come out of this can be 
stated thus: 

among the quantifiers which are gradual, the first level of uniformity 
is exhausted by the Square of Opposition: all, some, no, not all; while 
the second adds a higher-order 'Square': most, least, not least, not most. 

Beyond the second level, possibilities increase rapidly. 
In this and earlier results, one obtains both 'positive' basic deter

miners (all, some) and 'negative' ones (not all, no); whereas natural 
language seems to favour the former at simplex level. Additional 
cognitive speculation may be in order here. Perhaps, the mind's eye has 
more difficulty in discerning absence than presence in our Venn 
Diagrams. 

In the restricted area of logical determiners, effects of proposed 
semantic universals may be conveniently tested. For instance, the 
earlier-mentioned 'systematic gap' observed by Zwarts turns out to be a 
logical one: 

THEOREM. There are no asymmetric quantifier», except the empty 
one. 

Proof Suppose that D£AB holds anywhere. Recall that D satisfies 
CONS, EXT, QUANT. Now consider A, A n B, and add new in
dividuals to create a symmetric situation (see Figure 3). 

Fig. 3. 

By the above three postulates,. we have successively, DAA *, 
DA *( B n A), DA * A: and hence D has at least one symmetric pair; 
which refutes asymmetry. 0 

Thus, one can gauge the empirical content of proposed semantic 
universals. Always against the background of certain broad constraints, 
of course, which may be questioned themselves eventually. 
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1.7. BACK TO DETERMINERS IN GENERAL 

Several of the intuitions presented in the preceding section seem 
equally attractive for (basic) determiners in general. For instance, the 
motivation for Graduality and Uniformity is not tied up with logical 
quantifiers - although some of their specific implementations may be. 
Indeed, in the perspective of this book, a demarcation of 'logic' has 
largely lost its interest, because there turns out to be so much logicality 
outside of logic proper. 

The main principle of distinction between Section 1.6. and earlier 
ones was the use of Quantity. Pure numbers do not determine the 
meaning of the earlier adjectival restrictions, or of possessive deter
miners. We shall look into these cases now. But note that both concern 
complex determiner expressions. There do not seem to be non-quanti
tative simplex determiners, as is noted in Keenan and Stavi (1982). The 
adequacy of Quantity will be taken up again at the end of this section. 

For present purposes, it is advantageous to reformulate Quantity to 
an equivalent, often encountered in the logical literature: 

for every permutation n of the individuals in the universe E, 
D£AB iff D£n[A]n[B] , for all A,B~E. 

Thus again, no individual feature of the objects involved is relevant to 
the truth of the determiner relation. 

Let us now consider some other determiners, starting with adjectival 
restriction. An expression such as all blond satisfies Conservativity, but 
it lacks Quantity (see Figure 4). 

sailo,s blue-eyed 

soldiers brown·eyed 

blond 

Fig. 4. 
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One can permute sailors and soldiers in vertical pairs. Yet all blond 
sailors are blue-eyed is true, while its permuted version all blond 
soldiers are brown-eyed is false. 

But there is a remedy. Admissible permutations in this case ought 
to satisfy an additional feature, viz. respect of the predicate blond: 
x E [blond] iff n(x) E [blond]. In other words, adjectival determiners 
are sensitive to additional structure of the universe. Thus, models will 
now become enriched structures (E, P) with additional predicates P: 
and Quantity becomes a maxim of Quality: 

QUAL for every permutation of the universe E which is a 
P-automorphism of B' = (E, P), and all A, B ~ E, 
D,rAB iff D,rn[A]n[B]. 

Thus determiners have now become functors assigning binary 
relations among subsets to models of a given 'similarity type'. 

In the new perspective, adjectival restrictions satisfy the obvious 
generalization of the Extension principle: 

if B' = (E, P) is a submodel of B" = (E', P'), then, 
D,rAB iff D,r.AB, for all A, B ~ E. 

Now, let us see how this works for possessive determiners. A basic 
case like Mary's satisfies CONS, but QUANT fails again (see Figure 5). 

painted 

Mary • 

faked 

Fig. 5. 

As with the sailor/soldier example, Mary's dolls are painted may be 
true, whereas the quantitatively similar Mary's tears are faked is false. 
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Evidently, possessives are sensitive to the underlying possession ties 
('of') among individuals. But again, Quality holds with respect to a 
suitable similarity type: this time, 'individual constant (Mary), binary 
predicate ('s)'. And the same holds true of Extension. (For more 
complex possessives, such as every girl's, the latter principle needs more 
care.) 

The general picture emerging is that of determiners satisfying a 
'hidden variable' version of Quantity: 

for some suitable finite similarity type a, D can be regarded 
as a functor on all models (E, a), assigning a binary relation 
among subsets of E which is invariant for a-automorphisms 
ofE. 

As we shall see later, this postulate allows us to transfer several results 
obtained for quantifiers to arbitrary determiners. How general is this 
strategy as a means of describing determiners? There are some mathe
matical questions in the background here concerning global definability 
of the permutation groups leaving a certain pre-assigned relation DE 
invariant. But, the previous examples rather suggest that the relevant 
similarity type be read off directly from the linguistic items entering the 
description of the determiner, such as adjectives, proper names, affixes, 
etc. 

With such additional structure present there also arise further 
reasonable constraints. For instance, one might desire Non-Creativity: 

a statement DXY implies no non-trivial facts about the 
underlying a-structure. 

In other words, determiners should not rule out any underlying 
patterns. 

For an illustration consider the above example of Mary's. Which 
first-order definitions could it have in the language appropriate to its 
similarity type? First, the combined effect of Conservativity and strong 
Extension is to make DgAB equivalent to DA+A(B (l A), where A+ 
is the submodel of,ff with universe A u HMary]l. Syntactically, this 
amounts to a relativization of all quantifiers in the defining formula to 
A +, and hence to a formula involving only A -restricted quantifiers 
together with assertions about Mary. 

Non-Creativity holds here, because the reflexivity of our example 
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(Mary's XX) even implies that, for every possession structure B' = 

(E, M, of), there exist A, B <;;;; E such that D,IjAB. 
Moreover, earlier special purpose conditions are still applicable. 

Notably, Mary's XY is upward monotone in Y - and so Y will only 
have 'positive' occurrences in the defining formula (cf. Section 2.5.). 
Also, downward monotonicity holds with respect to X - and even for 
the possession structure of: removal of of-ties from a model does not 
affect the truth of Mary's XY. By the earlier relativization condition 
then, it follows that our basic possessives are preserved under the 
transition to submodels of the original universe. By standard logic, then, 
the defining formula must be a purely universal predicate-logical 
sentence - in which, moreover, all occurrences of A, of will be 
syntactically 'negative' ones. 

Thus, the following is the basic scheme for possessive determiners: 

and their conjunctions. Here, the superscript 'X' indicates relativization 
to the predicate X, y is any positive quantifier-free condition, and l:: Yy 
some disjunction over a subset of y. The simplest possible case is 
VXy(ofxy -> Yy): which is precisely the meaning of the phrase x'sXY. 

So, previous notions still apply to qualitative determiners. But what 
about earlier results? Most work remains to be done; but, at least, 
Chapter 4 contains an example of suitably generalized global intuitions 
of Graduality and Uniformity in a qualitative setting, with a corres
ponding classification theorem. 

But, could one not take a short-cut, by 'immediate transfer'? There is 
a feeling, arising from practice, that for instance the non-existence 
results of Section 1.6. for logical determiners are quite characteristic for 
determiners in general. Here is one reason why. 

Often, the relevant semantic regularities are of the form V Dcp, where 
cp is some first-order assertion about the determiner D. For instance, 
the asymmetry example becomes VD , Vxy(Dxy -> ,Dyx) - or, 
one can think of such valid connections as 'transitivity implies quasi
reflexivity (VxVy(Dxy -> Dxx»' (cf. Zwarts, 1983). Our conjecture is 
that, for laws of this kind, validity for logical determiners implies 
validity for all determiners. (Thus, Quantity would be a 'conservative 
addition' to the universal theory of determiners.) Here is one case 
where this can be proved. 
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No new inferences. Let D be any qualitative determiner with respect 
to some similarity type a (without individual constants or functions). 
Define a new determiner D+ on universes E as follows. Set all pre
dicates in a equal to the universal relation (of the proper arity) on E. In 
this way, every permutation of E becomes a a-automorphism of the 
enriched modelg'. Then, setting D~AB iff D,rAB, makes D+ a quantita
tive determiner. And evidently, D+ will validate any inference schema 
which held for D. (For the converse question, see Section 4.10.) 

But already with different similarity types, difficulties arise. For 
instance, the proof for the asymmetry universal does not go through for 
a possessive such as Mary's. The reason is that the necessary 'duplica
tion' of A to A * may not be possible. For, in case the proper name 
Mary denotes an object in A - B, it cannot also denote something in 
A * - B. And in fact, if we could construe certain cases of x's XY as 
implying that x is in X, but not in Y, then there would be an asymmetric 
determiner after all. (Actually, this appears to be impossible - but the 
reason is not entirely clear.) 

Still, whether by immediate transfer or through suitable gener
alization, there are good prospects for a general logical theory of 
determiners. 

Even so, this direction of research may be misguided. Importing 
linguistic material from complex determiner expressions into their 
similarity types may not be superior to the obvious alternative: which is 
to bring in explicit arguments or parameters for determiner relations. 
Thus, adjectival restrictions (all Z)XY (meaning [Z] n [X] ~ [Y]) 
could also be viewed as ordinary quantitative determiners in three 
variables. A similar observation holds for possessives - whose proper 
analysis is in dispute in any case, being tied up with the general 
semantics of genitives. And, once the influence of case is acknowledged, 
the latter had better receive a uniform treatment on top of our 
determiner account. Thus, it may be premature to give up Quantity at 
all. 

1.8. FURTHER DIRECTIONS 

As was stated at the outset, not all occurrences of determiner expres
sions have been treated here, nor even all possible uses of the subject 
position. 
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To begin with the latter, one obvious desideratum is an account of 
plurality extending the present one. Moreover, given the well-known 
analogies between plurals and mass-terms, the interplay between what 
may be called 'discrete' and 'continuous' quantification should be 
investigated. Some preliminary proposals on both scores will be found 
in the next chapter. 

Then, there are the other occurrences of determiners in direct 
objects, relative clauses, in 'floated' position, etc. Our prediction is that 
these will reduce to the present account, once an appropriate categorial 
perspective is adopted (cf. Chapter 3). For instance, although the clause 
fears every wolf seems to have the determiner connect a unary predicate 
with a binary one, there is an ordinary inclusion relation underneath -
between [wolf] and [being feared by x], for some fixed object x. 
Likewise, floated occurrences are brought into the fold in Dowty and 
Brodie (1984). 

More of a challenge is posed by ordinary subject occurrences in 
so-called 'donkey sentences'. Barwise and Fenstad have suggested that 
the familiar example every farmer who owns a donkey beats it expresses 
a determiner relation every between the two binary predicates AXY . 
(jarmer(x) & owns(x, y» and AXY . beats(x, y). More generally then, 
arbitrary determiners might have to relate pairs of predicates of higher 
arities. Technically, this is an interesting instance of the earlier
mentioned very generalized quantifiers of Lindstrom (1966). Never
theless, there are some reasons for caution here. For instance, the 
meaning of these higher occurrences is often far from clear. Although 
the first example is usually read as inclusion of pairs, this format breaks 
down for other cases, such as most farmers who . . . . And even the 
meaning of the standard example is being debated. Thus, a proper 
generalization from the unary case needs a good deal of reflection. 

Finally, an area which has been studied already to some extent is that 
of determiners with more arguments, such as more X than Y. As is 
shown in Keenan and Moss (1984), much of the preceding theory 
generalizes to this area, often in a surprising manner. One simple 
example is the new form of Conservativity: 

DAI ... AnB iff DAJ •• • An(B n (AI v ... v An». 

Summarizing, there is every reason to expect that the present 
approach will generalize to all types of determiners. Still, this does not 
mean that the generalized quantifier perspective is a unique best 
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approach to noun phrases and determiners. In fact, there are important 
phenomena, such as iteration of determiners or anaphoric relations, 
about which it has little if anything to say. We have been throwing light 
upon natural language from a very specific angle. 



CHAPTER 2 

QUANTIFIERS 

Ever since the days of Aristotle, quantifiers have occupied a central 
place in the logical study of reasoning. Traditionally, attention has been 
restricted to the four quantifiers in the Square of Opposition and their 
inferential behaviour. The more general perspective of our first chapter 
extends this field to arbitrary quantitative ties between predicates. As a 
result, various new directions arise for logical research. 

2.1. WHAT ARE QUANTIFIERS? 

Usually, the existence of a limited set of logical constants is taken as an 
ultimate fact. But, how is it that there are just these? Such metaphysical 
questions seem to go beyond the province of logic itself. As it turns out, 
however, exact answers may be obtained by formulating plausible intui
tive constraints on 'logicality' of generalized quantifiers. 

Recall that a generalized quantifier is any functor Q assigning, to 
each universe E, a binary relation QE between subsets of E. But, to 
qualify as a real logical 'quantifier', additional constraints are to be 
satisfied, some of which were already found in Chapter 1. 

First, being determiners, quantifiers share the general property of 
Conservativity: 

(CONS) 

A more specific feature is their 'topic-neutrality': no individual plays a 
distinguished role. Mathematically, this becomes the invariance prin
ciple of Quantity: 

for all permutations n of E, and all A, B ~ E, 
QEAB iff QEn[A]n[B]. 

Thus, the individuality of the members of A, B is discounted. But, one 
may go further than this local requirement, crossing boundaries 
between various contexts E: 

for all sets E, E', all bijections n from E to E', and all A, B 
~ E, QEAB iff QE,n[A]n[B] (QUANT) 

25 
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'Pragmatically loaded' quantifiers such as few or many need not pass 
this test - but the ordinary ones, such as all, most, some and no do. 

As we have seen already, once distinguished (groups of) individuals 
become important (as for Mary's, no blue), Quantity makes way for a 
weaker invariance principle of Quality, with respect to permutations 
respecting this additional structure. 

Moreover, logical quantifiers are 'context-neutral', being invariant for 
Extension of the context: 

for all E, E', and A, B ~ E ~ E', 
QEAB iff QEAB (EXT) 

This postulate allows us to drop the subscript 'E' whenever convenient. 
The cumulative effect of these constraints may be pictured as in 

Figure 6. 

~E 
E 

~ ACQ~~::) A(])B 
CONS QUANT EXT 

~ @ 
CONS+QUANT CONS,QUANT +EXT 

Fig. 6. 

Finally, if the relation Q is really to depend on its second argument 
- or alternatively, if the logical constant is to do some work for us, it 
ought to exhibit some Variety of behaviour: 

for all non-empty A ~ E, there exist B, B' ~ E such that 
QEAB, not QEAB' (VAR) 

Weaker versions of this condition exist too, such as the following: 

for every non-empty E, there exist A, B ~ E with QEAB, 
but also A', B' ~ Ewithout QEA'B'. 
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Even the latter, more modest formulation still excludes numerical 
quantifiers such as at least two (consider a one-element universe). 

Variety is not an essential postulate in our view. Nevertheless, it 
often facilitates exposition, allowing us to concentrate on essential cases 
first, postponing complicating combinatorics. 

Next, in ordinary logical model theory, one would drift toward the 
usual score of questions concerning the present quantifiers; moving into 
the realm of infinite cardinalities (a, b), in order to apply current 
compactness or Lowenheim-Skolem arguments. But in the semantics 
of natural language, it may be argued that finite models are fundamental 
(cf. Section 1.2.). Therefore, we will usually avoid infinite cardinalities, 
even when this deprives us of slick logical methods. Indeed, several 
results in this chapter hold for finite models only. One would like to see 
more results in logical semantics where this characteristic assumption 
plays a crucial role. 

2.2. THE TREE OF NUMBERS 

The net effect of CONS, QUANT and EXT is to make a quantifier Q 
equivalent to the set of couples of cardinalities 

(a, b), with a=IA-BI,b=IA n BI 

which it accepts. A very convenient geometrical representation then 
arises, of quantifiers Q as subsets of the following 'Tree of Numbers' (or 
more prosaically, the north-eastern quadrant of the integer plane) (see 
Figure 7). 

IA I = 0 

IAI = 1 

IAI = 2 

IAI = 3 3,0 

• • • a • • 
Fig. 7. 

Conversely, representability in this tree implies the above three basic 
postulates. 
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Some examples of quantifier patterns are as follows, with markers + 
for Q, - for non-Q (see Figure 8). 

+ + + 
+ + + 

+ + + + + + 
+ + + + + + + 

+ - + + + - + + ++ + + 

.Q!l ot leost two holf or more 011 but on even 
number 

Fig. 8. 

Now, additional conditions on quantifiers will translate into geo
metrical constraints on quantifier sets, which are often easily visualized. 
For instance, V AR says that every row below the top must have 
occurrences of both + and -. Likewise, the earlier special purpose 
conditions of Monotonicity and Continuity (Section 1.4.) acquire con
crete meanings. For instance, 

- MONt expresses precisely that, if a point on the tree belongs to 
Q, then so do all points to the right of it on the same horizontal line; 

- MON~ is the analogous principle toward the left; 
- tMON expresses that, if a point belongs to Q, then so do all 

points in the downward triangle generated by this point as a root (i.e., 
by successively adding units left and right); and 

- ~MON is the analogous principle in the upward direction. 
One can easily draw pictures to illustrate this. Likewise, continuity 

conditions become convexity properties of quantifier sets. For instance, 
left-continuity corresponds to convexity in the natural geometry of the 
tree: 

if (a, b),(c, d) E Q, with a ~ e ~ cand b ~ f ~ d, 
then ( e, f) E Q (see Figure 9). 

c,d 

Fig. 9. 
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For proofs of these assertions, see van Benthem (1984d). But, they 
are really evident, once the principle of the tree representation is 
grasped. 

Various technical applications of the above point of view will be 
found in the following sections and chapters. In addition, the tree 
picture itself suggests new conditions on quantifiers, as we shall see 
below. 

2.3. MONOTONICITY 

With the above point of view, more insight can be obtained into the 
central notions of Monotonicity, Persistence and Continuity, presented 
in Section 1.4. 

To begin with, for logical quantifiers, Persistence is a very strong 
condition. Notice that all non-standard examples, such as most, few lack 
it, even though they do possess forms of Monotonicity. 

THEOREM (V AR). The persistent quantifiers are precisely those in 
the Square of Opposition. 

Proof. That all these quantifiers are persistent follows by inspection. 
Conversely, consider any persistent logical quantifier in the tree of 
numbers. There are only four possible top triangles (by V AR, the 
second row must already have +- or -+). Each of these determines 
one quantifier in the tree, through the earlier geometric observations on 
monotonicity types. For instance, a top triangle ++_ already violates 
jMON: whence the corresponding quantifier must be ~MON. This again 
implies that + can only occur on the left edge of the tree (otherwise, the 
indicated marker - would have to be +); where indeed it must occur, 
by V AR. Thus, this case yields the quantifier no. 0 

Without Quantity, this characterization fails. For instance, fix any object 
a. Set QAB if A 11 B = { a} (when a E A), or A 11 B = 0 (when a ~ A). 
This quantifier satisfies all general postulates, except Quantity. More
over, it is downward persistent - and yet outside of the Square. Note, 
however, that Q is not monotone, either way. With Double Mono
tonicity, the above result holds even in the absence of QUANT, witness 
Section 1.4. 

Without Variety, many more patterns are available for double 
monotone quantifiers. Still, all of these can be classified geometrically. 
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For instance, consider the shapes of ~MON~ quantifiers in the tree. 
These are closed under 'upward trees' as well as 'left lines'; i.e., 
typically, each point (a, b) in the quantifier contributes the trapezoid 
(a, b), (a + b, 0), (0, 0), (0, b) (see Figure 10). 

Fig. 10. 

Geometric inspection of the possible shapes allowed by this closure 
property reveals a finite union of such trapezoids, possibly together 
with an infinite band along the left edge of the tree. Any such pattern 
may be viewed as an intersection of unions of regions of the types 

- an infinite band (at most k A are B) 
- a top triangle (there are at most n A). 

Thus, every ~MON~ quantifier is logically equivalent (on finite 
universes) to a conjunction of sentences of the types 

there are at most n A, or at most k A are B, 

or equivalently, at most k out of every n + 1 A are B. Two more 
melodious special cases are n = 1, k = 0: no A is B, n = k + 1: at most 
k A are B. From this classification a description for the remaining three 
double monotonicity types is easily extracted. 

Observe that all quantifier patterns mentioned are first-order defin
able in a monadic predicate logic with two unary predicates and 
identity. Indeed, the left-hand side is crucial here: 

all persistent patterns are first-order definable. 

Proof. This result has the following geometrical explanation. First, 
consider tMON quantifiers. Every point generates a downward triangle, 
and therefore, the whole quantifier must be a finite union of such 
triangles, as in Figure 11. 
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Fig. 11. 

For, start from any triangle within the quantifier: only finitely many 
steps can be made toward the edges of the whole tree. Evidently, every 
pattern of this kind is first-order definable. 

As for !MON cases, notice that their negations are tMON quan
tifiers.D 

U sing this method of shapes, Westerstahl has even shown the follow
ing, on finite universes: 

THEOREM. All left-continuous quantifiers are first-order definable. 

Thus, our constraints on quantifier denotations turn out to be related to 
more traditional logical ways of description. 

Various further definability results using the Tree may be found in 
van Benthem (1984d) and Westerstahl (1984). Another type of ap
plication is made in Thijsse (1985), where counting formulas are 
obtained for an array of denotational conditions. One elegant example 
is this: assuming V AR, the number of left-continuous quantifiers is 
counted by (every second member of) the well-known Fibonacci 
Sequence. There must be some deep truth here about the semantic 
flora. 

2.4. FURTHER INTUITIONS OF LOGICALITY 

The three postulates QUANT, CONS, EXT, together with V AR, 
delimit an important, but still rather heterogeneous class of generalized 
quantifiers. It contains many of the usual first-order quantifiers, but also 
some highly artificial second-order ones. Can one single out a more 
homogeneous group? Indeed, there are various further intuitions 
concerning quantifiers (or logical constants in general) that may be 
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brought to light. These additional postulates draw the dividing line in a 
way which does justice to our feeling that some higher-order quan
tifiers, such as most or least, are relatively natural ones, while most 
others seem unrealistic. 

Graduality. One persistent idea is that there should be a certain 
'smoothness' in the semantic behaviour of basic quantifiers. The various 
continuity notions of earlier sections already captured several forms of 
this phenomenon. 

The most innocent, and attractive formulation is surely the right
hand version: 

QAB, QAC, B ~ D ~ C imply QAD. 

In the tree of numbers this means that the quantifier intersects 
horizontal rows in uninterrupted stretches. But, stated in this way, the 
principle is biased toward presence of the quantifier relation - unlike 
the earlier intuitions, which treated absence symmetrically. Therefore, it 
seems equally reasonable to demand continuity of absence: 

not QAB,not QAC, B ~ D ~ Cimplynot QAD. 

Together, these principles enforce right-monotonicity (upward or 
downward) in each row of the tree. Their conjunction will henceforth 
be referred to as CONT. 

But, there is more to the above intuition. Looking in a vertical 
direction, one also expects regular behaviour of a quantifier across 
rows. In particular, there should be smooth transitions between 
adjacent horizontal rows. That is, there should be no dead-lock. If QAB 
holds, and one adds a new individual to A, then at least one of the 
two options (enlarging A - B or enlarging A n B) must again result 
in truth for Q; and similarly for falsity of Q. In terms of the number 
tree: 

if (a, b) E Q, then (a+ 1, b) E Q or (a, b+ 1) E Q, 
if (a, b) ~ Q, then (a+ 1, b) ~ Q or (a, b+ 1) ~ Q. 

This postulate will be called PLUS. 
Together, CONT and PLUS express a strong form of continuity in 

all three main directions of the tree: ....... , ,I' and '\.. (This point of view 
will return in Chapters 8, to.) 

Finally, we come to the most esoteric, but perhaps also the most 
fundamental of our intuitions of logicality. 
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Uniformity. The above graduality theme is interwoven with a related 
idea, viz. that basic quantifiers should have a 'uniform' behaviour. No 
cardinality pair (a, b) should be special, so to speak. One dynamic way 
of implementing this idea is by identifying a quantifier with a (recursive) 
procedure for assigning truth values to cardinality pairs - which is the 
main topic of Chapter 8. Right now, we opt for a more static formula
tion, however. 

The earlier addition of an individual to some 'situation' may be 
regarded as a typical thought-experiment for testing the behaviour of a 
quantifier. Starting from an arbitrary (a, b) (with Q true or false), one 
notes the truth values for (a + 1, b) and (a, b + 1). In all, there are 
eight possible truth value patterns for this experiment (of which PLUS 
rules out the outcomes _+_ and +-+). A straightforward version of 
uniformity is then the following: 

for each truth value, the addition experiment has the same 
triangle of outcomes everywhere. 

Thus, it does not matter where we perform our test: Q will behave 
uniformly. This postulate will be called UNIF. 

Thus, three additional postulates have been extracted from our 
intuitive ideas about the desired regularity of quantifiers. Which quan
tifiers (if any) are left by these, in combination with the earlier 
constraints? 

THEOREM. On the finite sets, the only generalized quantifiers satisfy
ing QUANT, CONS, EXT, VARas well as CONT, PLUS, UNIF are 
all, some, no and not all. 

Thus again, the Square of Opposition emerges. 
Proof First, these four quantifiers satisfy all seven constraints. 

Conversely, consider the tree of numbers. Which +/- patterns are 
allowed by these conditions? At the top, there may be either + or -. At 
the next row (a + b = 1), more possibilities appear, and hence we 
distinguish some cases. Case 1: + on top. By V AR, the second row 
must be +- or -+. Consider the former first. By UNIF, the third row 
will start with +- again: and then, by CONT, its last entry must be -. 
By UNIF once more, the pattern now extends downward, to form the 
quantifier no. Analogously, the other case becomes the quantifier all. In 
a similar manner, a top position - generates only the two possibilities 
not all and some. 0 
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Given the small range of quantifiers remaining, it becomes of interest to 
re-examine the uniformity idea. Perhaps, this should be relaxed, so as to 
allow different outcomes for the thought-experiment. But then, where 
else should the desired regularity be located? 

Let us conduct the experiment, first increasing a only, noting the 
outcome, then increasing b only, but finally adding a unit to both, thus 
restoring the original balance. Even allowing different patterns for the 
first two separate tests, one can at least demand unicity of outcome for 
the final test: each truth value pattern for the addition experiment 
determines a unique outcome for the combined move. 

But our idea of uniformity goes further than this. As before, the 
particular place (a, b) where the experiment occurs should be im
material; and hence we also require 'repetition' in the following sense: 
if the combined addition experiment restores the original truth value, 
then it will repeat itself at the new location. This new version of the 
third postulate will be called UNIF*. Here is the statement of its 
impact. 

THEOREM: On the finite sets, the only generalized quantifiers satisfy
ing QUANT, CONS, EXT, VARas well as CONT, PLUS, VNIF* are 
all, some, no, not all together with most, not most, least, not least. 

Thus, one next 'Square of Opposition' emerges. 
Proof. Again, these eight quantifiers meet all seven requirements. 

Conversely, one checks possibilities in the number tree. Here is one 
typical case. Let the top position be +, followed by a second row +-. 
By PLUS and CONT, the third row can only be ++- or +--. At this 
stage, the revised uniformity condition comes into play. With the 
former third row, the first combined experiment has been restorative 
(+:-), whence it will repeat itself. Consequently, two more restorative 
patterns appear on its sides, viz. +++ and +--. By UNIF* and CONT, + -
then, the quantifier must be not most. With the latter third row, 
however, the first experiment (++_) now has outcome -, and, by unicity 
of outcomes, this phenomenon extends downwards. Then, again by 
VNIF* in combination with CONT, the quantifier becomes no. The 
remaining cases are entirely analogous, the top triangle _++ produc
ing the quantifiers not least and all, while the negative top position 
generates the remaining four quantifiers in a wholly symmetric fashion. 
D 
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Thus, the 'respectable' higher-order quantifiers have been found in the 
same boat with the basic first-order ones. This type of reasoning is quite 
flexible, yielding many additional insights. For instance, it may be seen 
that leaving out CONT altogether would still generate a recursively 
enumerable class of admissible quantifiers. 

Obviously, the uniformity intuition has not received a final evident 
form here. There seems to be rather a whole hierarchy of uniformity 
notions, and this may conceivably give rise to a cumulative hierarchy of 
quantifiers in 'degrees of uniformity'. 

Appendix: Variants of Uniformity 

As the development of more volatile intuitions concerning denotations 
is an unfamiliar topic in semantics, we add one further illustration. 

One attractive form of Uniformity requires endless repetition of 
truth value patterns, in the spirit of Mandelbrot's 'fractals': 

equal truth values in the tree generate equal downward tree 
patterns. 

Its effect is to leave only the following possibilities: 

no, an even number of, all, all but an even number of, 
some, an odd number of, not all, all but an odd number of 

Proof By Variety, there are only four possible top triangles. Each of 
these then splits up into two possibilities for the third row, after which 
all downward propagating patterns have become fixed. 0 

An obvious weakening of this condition would allow for some finite 
variety of tree patterns for each truth value. This lets in quite a few 
additional quantifiers, in a hierarchy following the number of distinct 
patterns allowed. 

Again, these examples illustrate our two main concerns: definability 
results for quantifiers satisfying new intuitive constraints, as well as 
hierarchy results classifying our quantifiers in layers of denotational 
complexity. Thus, we obtain 'natural kinds' of quantifier beyond the 
traditional realm of logical constants. 

A final remark. The above notions of Uniformity are connected with 
the earlier-mentioned procedural point of view. For instance, the 
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requirement of equal generated triangles for all + positions (and 
likewise, for all - positions) allows for a representation of the relevant 
quantifiers by means of two-state finite state machines. (Here, + 
becomes an accepting state, - a rejecting one; with transition arrows 
for scanning further a or b individuals read off in the tree.) In Chapter 8, 
this machine perspective will be developed further, with several perti
nent results in Section 8.2. In general, the above hierarchy of patterns 
of 'finite uniformity' corresponds exactly to a hierarchy of quantifiers 
computed by finite state machines with varying numbers of states; as 
finitely homogeneous trees may be contracted to finite transition 
graphs. 

2.5. FIRST-ORDER DEFINABILITY 

The preceding sections have been mainly devoted to notions arising out 
of current semantics of natural language. But a more traditional logical 
question has also appeared at times. How are the quantifiers studied 
here related to those expressible in the usual logical languages, from 
monadic first-order logic upward? And furthermore, are any new 
questions generated concerning the latter? 

Starting with the simplest case, the class of first-order definable 
quantifiers is wider than just the monotone ones. For instance, precisely 
one is nonmonotone, yet first-order definable. Let us now consider the 
latter class in the light of the preceding. 

A first goal is to find a semantic characterization of first-order 
definable quantifiers on finite models. Now, in model theory, the 
answer for the general case is provided by the Keisler-Shelah theorem, 
in terms of isomorphs and ultra products. But the latter construction has 
no significance in the finite realm. There is also the Fra'isse back-and
forth characterization, however, which does go through in this restricted 
area. For the monadic predicate language, this amounts to invariance 
for models that are alike up to some fixed threshold. More precisely, 
set 

X -n Yifeither IXI = I YI = k < n, or lXI, I YI ~ n. 

By extension, set (E, A, B) -n (E', A', B') if the relevant four 
monadic slots stand in the - n-relation to their primed counterparts. 
The relevant characterization then becomes as follows: 
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THEOREM. On the finite models, a quantifier Q is first-order defin
able if and only if, for some fixed n, 

(E,A,B)-n(E',A',B') implies Q£AB iff Q£,A'B'. 

Again, the tree of numbers suggests a geometric way of viewing the 
characteristic behaviour of first-order quantifiers. In the light of the 
above theorem, these are the ones that, after an initial 'Sturm und 
Drang' phase, reach a 'Frmsse threshold', i.e., a line a + b = 2n such 
that 

- the truth value at (n, n) determines that of its generated down
ward triangle, 

- all truth values at (n + k, n - k) are propagated along their 
downward left lines (parallel to the edge), and 

- all truth values at (n - k, n + k) determine that of their down
ward right lines; as in Figure 12. 

1.2~ 

Fig. 12. 

Thus, on finite sets, the first-order quantifiers are essentially just 
finite unions of convex (and hence left-continuous) quantifiers. This is a 
kind of converse to the left-continuity theorem of Section 2.3. By way 
of contrast, note how a quantifier like most fails to be first-order 
definable on finite universes: as its pattern lacks a characteristic triangle 
of the above kind. 

The second main goal is again one of explicit classification. Here 
is an early description of monadic first-order logic with identity: 
all sentences are logically equivalent to Boolean compounds of the types 

at most k (non-)A are (not) Band 
there are at most k (non-)A. 

Using the tree representation, such classifications are easily verified by 
geometrical inspection. Thus, monadic first-order logic merely adds 
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some book-keeping devices to the simple quantifiers in the Square of 
Opposition. 

The duality between a structural notion (threshold invariance) and 
its syntactic counterpart (first-order definability) is typical of logical 
model theory. Many more questions concerning this interplay arise 
from the preceding sections. Here are two examples. 

- To find a preservation result characterizing Conservativity of 
first-order sentences. The obvious conjecture is that cp(A, B) is 
(strongly) conservative in A iff cp is logically equivalent to some 
sentence with all its quantifiers A -restricted. Kit Fine has observed that 
this follows, indeed, from the work of Feferman (1969). 

- To find a preservation result for monotonicity of first-order 
sentences. This time, the obvious conjecture is the following. cp(A, B) is 
upward monotone in A iff cp is logically equivalent to some sentence 
whose only occurrences of A are syntactically 'positive' (in the usual 
sense). Again, Kit Fine has shown how this follows, by a simple deduc
tion, from the Lyndon version of Craig's interpolation theorem. 

Another type of question was suggested by Jon Barwise. Instead of 
searching for definability, one may consider what happens when a 
certain kind of generalized quantifier is added to the first-order lan
guage. For instance, let us add Q in the form of assertions Qxy· cp(x), 
1jJ(y) - or Q AX • cp(x), AY • 1jJ(y). What about the logic of such an 
enriched language? Evidently, first-order logic remains valid, and so 
does any condition imposed on Q that can be expressed in the 
language. But, will there be additional 'mixing principles'? For the case 
where Q is monotone, Barwise has shown that no such new principles 
appear. Without proof, we state a similar result for one of our key 
notions: 

predicate logic with an added conservative generalized quan
tifier has its universally valid principles axiomatized by the 
usual predicate-logical axioms and rules of inference plus the 
conservativity axiom. 

Perhaps surprisingly, predicate logic with an added quantitative 
generalized quantifier has a non-recursively axiomatizable logic (cf. 
V1Uinanen, 1980). 

But actually, all these questions may be too traditional. Having 
gained the generalized quantifier perspective, as a better mirror of 
natural language, we should be wary of the usual formalisms. 

Query: Can one do preservation and completeness results (and 
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model theory in general) directly in terms of the generalized quantifier 
framework - and that in an enlightening way? 

A preliminary attempt at developing logical theories of inference in 
this way will be found in Chapter 6. One important step on that road 
will be taken right now. 

2.6. INFERENTIAL CONDITIONS 

The above questions take us back to an earlier theme (cf. Section 1.5.) 
of inferential conditions on determiners and quantifiers. Quantifiers 
exhibit familiar relational properties, such as 

transitivity 
reflexivity 
symmetry 
antisymmetry: 
irreflexivity 
linearity 

VXYZ(QXY & QYZ) .... QXZ) 
VXQXX 
VXY(QXY .... QYX) 
VXY«QXY & QYX) .... X= Y): 
VXiQXX 
VXY(X= Y V QXY V QYX) : 

all 
all, most 
no, some 
all 
notal! 
notal! 

Several of these play a role in the semantic literature. Plain reflexivity 
and irreflexivity are prominent in Barwise and Cooper (1981) (under 
the names of 'positive strong' and 'negative strong'), symmetry was 
important in Section 1.5. Even less common properties are exemplified, 
such as 'quasi-reflexivity' (VXY(QXY .... QXX), which holds for some. 
Likewise, no is 'quasi-universal': V XY( QXX.... QXY). (Curiously, these 
properties can often be found as conditions on alternative relations in 
possible worlds semantics - a connection whose explanation is 
obscure.) Yet more exotic properties may be realized through Boolean 
compounds of the above simplex quantifiers. 

Of course, such common conditions on binary relations need not be 
the most appropriate ones in the present area. But the above list at least 
suggests a certain relevance, that will become clearer below. 

Combinations of relational conditions can be used to classify 'natural 
kinds' of quantifiers. But one should be careful here. For instance, 
many beautiful results can be proved about 'the partially ordered 
quantifiers': but it turns out that one is describing only one single 
specimen: 

THEOREM. Inclusion (all) is the only reflexive antisymmetric quan
tifier. 



40 CHAPTER 2 

Proof If A ~ B, then QAB (by reflexivity and Conservativity, as 
before). If QAB, then QA(B n A) (CONS), but also Q(B n A)A, just 
as before: and hence A = B n A, (by antisymmetry), i.e. A ~ B. 0 

More positively, one can think of this result as a characterization of the 
universal quantifier by its inference patterns. 

COROLLARY. Not all is the only quantifier that is irreflexive and 
linear. 

Proof The characteristic properties for all produce those for not all, 
as the former may also be regarded as the negation of the latter. 
VXQXX goes to VX, QXX. VXY«QXY & QYX) -+ X = Y) goes to 
V XY«,QXY & ,QYX) -+ X = Y), which is equivalent to linearity. 0 

Similar characterizations may be proved for some, no; be they of a 
rather more artificial nature. In the presence of V AR, these results 
become more elegant, as we shall see below. 

To obtain larger classes, one must relax requirements. Generally, 
mere transitivity is very restrictive already: 

THEOREM. If Q is a transitive quantifier, then, on finite models, QAB 
implies A s:;;; B or QA 0. 

Proof Suppose that QAB without A ~ B. By CONS, QA(B n A), 
with B n A properly contained in A. Now, let B' be a minimal set 
properly contained in A such that QAB'. 

Claim: B' = 0. 
For, otherwise, choose A' such that I A' I = I A I and A' n A = B'. 

(Here, CONS and EXT are presupposed.) Therefore, since QAB', also 
QAA'. Now, consider any permutation n leaving B' as well as possible 
individuals outside of A u A' fixed, while interchanging A - B' and 
A' - B'. By QUANT, it follows that Qn[A]n[B'], i.e., QA' B'. 

A 

Fig. 13. 
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Next, choose any e E B' and e' E A' - B'. Let the permutation lT' 
interchange only e and e', leaving all other individuals fixed. Again by 
QUANT, QlT'[A']lT'[B'], i.e., QA'lT'[B']. By transi.ivity then, QAA' 
and QA'lT'[B'] imply QAlT'[B']: whence QA(lT'[B'] n A) (by 
CONS). But the latter intersection is properly contained in B', con
tradicting the latter's minimality. D 

This type of argument is typical for the use of Quantity. 
The conclusion of the theorem cannot be improved to read inclusion 

only. E.g., 'all A are B or there is at most one A, is a transitive 
quantifier admitting a non-inclusion case. Also, the theorem fails for 
infinite sets: 'A is infinite and A - B is finite' is a transitive quantifier. 

U sing these proof techniques, one can classify various natural sets of 
quantifiers by their inferential patterns. For instance, we recall the 
earlier result (Section 1.5.) that all reflexive transitive quantifiers are 
precisely the forms there exist at most n A, or all A are B. This result 
may also be verified in the tree of numbers, using a transcription from 
relational into geometrical or numerical conditions. A systematic use of 
this method is found in Westerstilil (1984). 

Once we assume Variety, all these cases collapse into one. 

THEOREM (V AR). All is the only reflexive transitive quantifier. 
Proof This follows from two results in Chapter 1. Reflexive transi

tive quantifiers have monotonicity type ~MONt, and, modulo Variety, 
there is just one of the latter kind, viz. inclusion. 0 

Again, the earlier negation transform implies a similar result for 
noninclusion: 

COROLLARY. Not all is the only irreflexive and almost-connected 
quantifier. 

Here, almost-connectedness is the following basic property of compara
tives: VXYZ(QXY ---> (QXZ V QZY)). 

On the other hand, completely negative results are also of interest, 
showing 'systematic gaps' of unrealizable conditions. As we have seen 
in Sections 1.5./1.6. already, such ·results confirm the suspicions of 
certain linguists, who had formulated 'semantic universals' to this effect. 
For instance, we have shown already that there exist no asymmetric 
quantifiers (except for the empty one). And again by the negation 
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transform, it follows that there are no strongly connected quantifiers 
(except for the universal one). Further reflections on the interplay 
between logical and linguistic (im)possibility will be found in Chapter 
10. 

2.7. INVERSE LOGIC 

Relational conditions on quantifiers are universal first-order sentences 
which may be regarded as expressing patterns of inference. More 
systematically, here are some 'pure' patterns, involving only a single 
quantifier Q: 

O-premise: (reflexivity) (universality) 
QAA QAB 

I-premise: QAB (symmetry) QAB (quasi-reflexivity) 
QBA QAA 

QAA (quasi-universality) QAB QAA 
QAB QBB QBA 

2-premise: QAB QBC (transitivity), etc. 
QAC 

Here and in the sequel, attention will be restricted to inferences where 
all statements are of the atomic form QAB. (Thus, e.g., disjunctive 
conclusions 'QAB V QCD' are not considered.) 

The third case, with two premises sharing a 'middle term', is the area 
of the Aristotelean Syllogistic. Apart from transitivity, the following in
teresting patterns are found: 

QAB QBC 
QCA 

(circularity) 

QAB QCB 
QAC 

( anti-euclidity) 

QBA QBC 
QAC 

( euclidity) 

Now, what Aristotle did was to take specific logical constants Q, and 
ask which patterns were validated by them. This has been the dominant 
question in the logical tradition ever since. What we have been doing, 
however, is a converse activity: given a set of inference patterns, to 
determine the range of logical constants realizing them. This change in 
perspective might be called another 'Copernican Turn' - this time, 
challenging deep Aristotelean presuppositions inside logic itself. 
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Some answers have been found in the preceding sections already, 
be it in a nonsystematic fashion. There are few transitive quantifiers, 
and no euclidean ones, as we have seen. Moreover, the earlier methods 
of proof yield many further answers. For instance, there are no sym
metric-reflexive or symmetric-transitive quantifiers. Instead of exhaus
tive cartography, here is a representative example. 

THEOREM. There are no nontrivial circular quantifiers. 
Proof By earlier types of argument (see Section 1.6., Figure 3), a 

quantifier with QAB anywhere has QAA*, QA*A for some A* - and 
hence QAA, by Circularity. So, circular quantifiers are quasi-reflexive. 
Hence, if QAB, then also QAA, and, again by Circularity: QAA, QAB 
imply QBA: circular quantifiers are also symmetric. But then, they are 
transitive as well. Now, consider any non-empty circular quantifier, with 
QAB somewhere. Either A S;;;; B (i) or it does not (ii). Case (ii): by 
an earlier result on transitive quantifiers (Section 2.6.), it follows that 
QA0. But then, Q will hold for arbitrary pairs of sets C, D (and hence 
be trivial after all). For, consider any C, D. We have: Q0A (symmetry), 
Q00 (CONS), Q0(C n D) (CONS), Q(C n D)0 (symmetry), Q(C n D) 
(C n D) (quasi-reflexivity); and hence QCD, as in the characterization 
of symmetric determiners given in Section 1.5. Finally, case (i) may 
be reduced to case (ii). Let QAB with A S;;;; B. Choose B' properly 
containing B: QAB' (CONS). Then consider QB' A (symmetry). 0 

Other types of logical question arise too. For instance, the earlier 
characterizations of the universal quantifier suggest the following. 
'Holistically', the meaning of a logical constant is given by the sum total 
of its valid inference patterns. Taking the pure case first, it may be 
asked whether the usual quantifiers are uniquely determined by their 
valid inference patterns. In subsequent chapters, we shall see how this 
query generalizes to other logical constants as well. 

Reflexivity plus transitivity turned out to characterize all (modulo 
Variety). What about its dual? 

THEOREM (V AR). Some is the only quantifier that is both symmetric 
and quasi-reflexive. 

Proof Let Q be an arbitrary symmetric quasi-reflexive quantifier. 
Then Q must be the overlap relation. First, suppose that A n B ~ 0. 
By V AR, there exists X S;;;; A n B such that Q(A n B)X. Then 
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Q(A 11 B)(A 11 B) (quasi-reflexivity), Q(A 11 B)A (CONS), 
QA(A 11 B) (symmetry) and hence QAB (CONS). Next, assume that 
QAB. Suppose that A 11 B = 0. Then QA 0 (CONS). As in the preced
ing proof, it follows that QCD for all sets C, D: which contradicts 
VAR.D 

By the negation transform, there is an immediate 

COROLLARY. No is the only quantifier that is both symmetric and 
quasi-universal. 

Summarizing the previous results then, modulo Variety, the Square of 
Opposition is characterized by the following pure inference patterns: 

all: transitive, reflexive 
not all: almost-connected, 

irreflexive 

some: symmetric, quasi-reflexive 
no: symmetric, quasi-universal 

Of these four quantifiers, not all is the only one without valid 
syllogisms of the original kind. (Its inferences all involve 'meta' negation 
and disjunction.) Perhaps, this accounts for the empirical fact that no 
human language seems to have found it necessary to contract it to a 
smoother simplex form. 

Removing the condition V AR allows more quantifiers. Indeed, there 
arises a noticeable underdetermination: 

THEOREM. At least two validates the same pure inference patterns as 
some. 

Proof First, suppose that some Q-inference is refuted in a model 
where Q is non-empty intersection. Then this model can be inflated to 
an at least two-counterexample, simply by adding new individuals ex, Y 

to X and Y, whenever such a couple of sets overlaps. Next, if some Q
inference is refuted in a model where Q is at least two, singleton 
intersections are to be removed in order to obtain a some-counter
example, without changing the relational pattern. This time, the proce
dure is this: as above, add new ex, Y and e~, Y to X and Y, for each pair 
X, Ywith IX 11 YI ~ 2. Then,just strike out all old individuals. D 

By the same reasoning, some turns out to have the same syllogistic 
theory as at least n (for any n = 1, 2, 3, ... ). The theorem does not 
disclose the form of that theory, however. Here it is. 



QUANTIFIERS 45 

THEOREM. Symmetry and quasi-reflexivity comprise the complete 
pure inferential theory of some. 

Proof Both are valid, of course: the converse is the crux. Suppose 
that cp(Q) is any universal first-order sentence about Q which does 
not follow from the above two principles. By Godel's Completeness 
Theorem, cp is falsified in some symmetric quasi-reflexive order. We 
shall be done if this can be transformed into a counterexample for cp 
where the relation is overlap between sets. 

First, contract all (possible) isolated points to a single one. This 
contraction isa so-called strong homomorphism, leaving (at least) all 
universal first-order sentences about Q invariant. Next, the resulting 
model may be represented as a set of doubletons (and singletons) with 
the overlap relation, by setting 

x rE. {( x, y) I Qxy). 

It may be checked that, successively, F is one-one, F preserves Q, and 
F preserves overlap. 0 

Similar results may be obtained for the family of quantifiers at most n 
(n=O,1,2, ... ). 

Finally, characterization of logical constants may also be viewed 
from another angle. Instead of imposing strong conditions such as 
Variety, one may also increase the number of inferences involved, by 
considering schemata in which several quantifiers occur at the same 
time. (An algebraic analogy may be helpful here. In the pure case, one is 
searching for a unique solution to a system of equations with one 
variable Q. In the mixed case, one searches for simultaneous solutions 
of the form (Q], Q2); etc.) 

A partial result in this direction was obtained in van Benthem (1985a) 
(see also Westerstahl, 1985 for a strengthening): 

THEOREM: The complete syllogistic theory of some and all is satisfied 
by precisely all couples 

at least n X are Y / there are at most n - 1 X or all X are Y 
(with n = 1,2, ... ). 

Thus, in a sense, traditional logic fails to enforce its intended interpreta
tion, at least inferentially. 

Yet, there are also mixed inferences involving both quantifiers and 
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connectives, such as forms of monotonicity, persistence, and even 
conservativity itself. Also, linguists have been interested in NP-denota
tions that are filters, being sets of sets closed under supersets (i.e., being 
MONt) and also under the formation of intersections: from QXYand 
QXZ to QX( Y and Z). In the finite case, the latter possess one smallest 
'generator', which can be recovered - something which has been used 
in the analysis of so-called 'definite' noun phrases. Our previous 
considerations are fully applicable to such new notions. One sample 
result is that, using V AR, all is the only 'filtrating' quantifier. Other, 
dual notions occur too, such as 'idealizing' quantifiers (in their left-hand 
argument), such as all and no. (Cf. van Benthem, 1984d.) 

Thus, there arises the truly holistic question whether the (pure and 
mixed) valid inferences of predicate logic determine precisely the usual 
interpretation of the logical constants. An answer to a question of this 
kind would be a deep type of completeness theorem. 

An Afterthought 

The preceding sections have illustrated two approaches to the notion of 
logicality for quantifiers. One proceeds by way of broad semantic 
constraints on denotations, such as Quantity or Uniformity. This makes 
quantifiers rich in 'semantic transfer': if they hold somewhere, they will 
hold in many similar situations. The other route, logically the more 
standard one, makes the relevant quantifiers rich in 'inferential poten
tial': logical constants are those key words and phrases oiling the wheels 
of reasoning. These two points of view are not necessarily co-extensive 
- and their connection ought to be clarified. 

2.8. INFINITY 

In the remammg three sections, possible extensions of the above 
'standard theory' will be considered, all of them rather tentative. 

In Chapter 1, a 'finitizing program' was advocated for semantics, 
re-admitting the usual infinite models only when some plausible recon
struction for them can be found. This is clearly a debatable position, 
and hence nothing prevents us from having a look at the infinite realm 
already. 

In van Deemter (1985), a survey is made of some central notions 
and results in the above, with an eye toward reducing or removing the 
finiteness restriction. As it turns out, many results go through at once, 
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or may be modified to do so. The only more intrinsically fmitistic 
subjects are certain definability theorems (e.g., the classifications of 
monotone quantifiers) as well as the earlier uniformity hierarchy. 

With quantifiers on both finite and infinite universes, three broad 
groups emerge. There are obvious 'extrapolations' of the earlier 
examples, there are also some natural essentially infinite ones (such as 
finitely many, infinitely many), and there is any number of more remote 
mathematical possibilities. Two important questions then arise. One is 
to formulate suitable notions of extrapolation from patterns in the finite 
tree of numbers to patterns in the 'Infinite Tree', having rows at each 
infinite cardinality. 

For instance, one might adopt a 'Stabilization Principle': 
Let n E N, 
- if (a, m) E Qforall m ~ n, then (a, ~() E Q 
- if (a, m) ~ Qforall m ~ n, then (a, ~() ~ Q 
- and likewise for the middle column (m, m) (m ~ n) toward 

(~()' ~(). 
For example, in this way, the finite pattern of all will extend to the 

first infinite row - and beyond, once the above is suitably generalized. 
Likewise, the finite quantifier at least nine tenths will produce the 
infinite pattern of almost all, in the sense of 'all, but for finitely many 
exceptions' . 

These ideas do not always suffice, however. For instance, most only 
determines the first infinite row up to its middle position (~o, ~o). In 
such a case, two strategies are possible. One is to allow undefined cases 
(which leads us to a three-valued approach, which may be attractive for 
presupposition-bearing quantifiers in any case), another is to introduce 
more sophisticated limit rules. 

Another interesting question is to characterize the 'natural' infinite 
quantifiers by our earlier method of denotational constraints. Here is 
one example, having to do with the central notion of monotonicity. 

Consider the following class of quantifiers Q, satisfying the prop
erties of 

D-MON: monotonicity (upward or downward) in both arguments; 
PLUS: if (a, b) E Q, and k is any cardinality (finite or infinite), then 

there exist kJ' k2 with k = kJ + k2 such that (a + kJ' b + k2) E Q. 
And likewise for non-Q. 
The latter condition is van Deemter's generalization of the 'smooth

ness' intuition PLUS of Section 2.4. 
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To exclude presently irrelevant considerations of higher infinite 
cardinality, we shall demand that Q be non-trivial on countable 
cardinalities (i.e., not always true or always false there): a kind of 
'Lowenheim condition'. 

THEOREM. The only quantifiers satisfying D-MON and PLUS under 
the Lowenheim restriction are those in the 'finite Squares of Opposition': 

at most n not, at least n + 1, at least n + 1 not, at most n 
(n = 0, 1, ... ) together with the infinite Square 
at most finitely many not, at least infinitely many, 
at least infinitely many not, at most finitely many. 

This certainly delineates a very natural class. 
Proof All quantifiers mentioned satisfy the above conditions. Con

versely, we shall consider one typical example. Suppose that Q has type 
tMONt. Well-known arguments give its pattern in the finite tree of 
numbers: either it is empty, or it has a shape like that in Figure 14. 

Fig. 14. 

Consider the latter case. PLUS forbids irregular kinks in the 
boundary, and hence the shape must be that of at least k, for some k ~ 0. 
Actually, k ~ 1, since otherwise the first infinite row would be all + 
(by tMON), and Q would become countably trivial. But then, the 
infinite rows of the tree are fully determined through the following 
observations. At infinite level a, 

- all positions (a, s) with s ~ k get + (apply tMON to (k, k) E Q 
and k ~ a, k ~ s), 

- the position (a, k- 1) gets - (since (k, k- 1) has -, using 
PLUS, adding a entities. Notice that the - cannot be put any further 
toward the right.), 
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- all positions (a, s) with s < k - 1 then get - (by MONt). 
Thus, this case becomes at least k all the way througil. 

49 

In addition, the former case with a negative finite tree yields one 
infinitary quantifier. For, consider the position (~o, ~o). If it is -, then 
so are all (n, ~o) and (~o, n) for finite n (by tMON), making Q 
countably trivial. Therefore, (~o, ~o) must have +, and hence so do all 
nodes (a, b) with a ~ ~o, b ~ ~o (by tMON), as well as all nodes 
towards their right (by MONt). Finally, a suitable use of PLUS with 
respect to the -nodes (n, n) (n finite) gives - for all nodes (a, n) (a ~ 
~o). Thus, the quantifier becomes at least infinitely many. 

The other three double monotonicity cases are similar. D 

2.9. DISCRETENESS AND CONTINUITY 

Of the several uses of quantifiers ignored at the outset, one seems 
particularly intriguing, viz. the 'continuous' one (some water, much 
wine, ... ). The preceding sections have been devoted to 'discrete' or 
'countable' collections, rather than continuous chunks of the world - a 
neglect which is customary in modem semantics. But the duality 
between these two perspectives seems a basic fact of human thought, 
and hence the question arises how far the preceding investigation is tied 
up with the discrete world view. 

Fortunately, the earlier notions and results may be viewed from a 
more comprehensive standpoint, embracing both discrete and con
tinuous entities. Via the well-known analogy between mass nouns 
(water, wine, time) and collections (willows, girls), one may think of 
general semantic models as 'inclusion structures' 

:s =(/, ~); 

of the form <.9' (E), ~) in the earlier cases, possibly atomless in the 
continuous case. These models may carry additional structure. Specif
ically, inclusion may give rise to a lattice structure for join (n) and 
meet (U ), or even a Boolean Algebra with complements. Henceforth, a 
generalized quantifier will be a functor assigning, to each inclusion 
structure :S, some binary relation D;j' on its universe I. rNe will usually 
think of:S as a lattice.) 

Earlier general constraints are easily formulated in this new setting. 
Notably, Conservativity becomes 

D::Jxy iff D::Jx(y n x), for all x, y in I. 
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And indeed, this is equally plausible in the continuous case. Most wine 
was drunk last night means the same as most wine is wine drunk last 
night. 

Quantity requires some reformulation, as it cannot be assumed any 
longer that there are individuals (atoms) underlying our inclusion 
structure. But in its earlier permutation version, the induced map .n[X] 
on subsets X of E may be characterized independently as follows. A 
permutation .n of the power-set of E is induced by an underlying 
permutation of indviduals if and only if .n respects inclusion: 

X ~ Y iff .n(X) ~ .n(Y). 

Proof. Two observations suffice. First, such inclusion automorphisms 
.n map singletons (inclusion atoms) to singletons, enabling one to 
recover an individual permutation. Also, such functions are continuous, 
in the usual mathematical sense of preserving arbitrary unions of 
subsets: 

Now, Quantity may be given the general formulation that determiner 
relations be invariant for inclusion automorphisms of g. 

Perhaps surprisingly, the effect of Quantity is more severe in the 
continuous case than in the discrete one - where it left standard 
quantifiers such as all, some, but also most, or many. 

EXAMPLE. Let (I, ~ > consist of all open real intervals, with set 
inclusion. The only conservative, quantitative determiner relations are 
all, some and their Boolean compounds. 

That any other possibility is excluded may be seen as follows. 
Consider an open interval A with a proper open subinterval B of any 
size. There is always some topological transformation of the reals which 
is a bijective inclusion automorphism in the above sense, fixing A, while 
sending B to some pre-assigned portion of A (large or small). So, one 
can only distinguish the above coarse possibilities. D 

Thus, the traditional logical quantifiers can be viewed as the 'topo
logical invariants'. The others, such as most, much or little, are only 
invariant for those automorphisms which also preserve some additional 
metric structure. After all, this is not completely alien to the discrete 
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world picture either, witness earlier discussions of 'qualitative' deter
miners (Section 1.7.). 

Finally, other general intuitions, such as the Graduality of Section 
2.4., remain plausible in the continuous realm too. In fact, they may 
even receive more appealing mathematical formulations there, in the 
familiar continuity terminology of 'small changes - small effects'. 

In general, such principles only unfold their meaning on infinite 
structures - which is yet another motive for pursuing the topic of 
infinity after all. 

2.10. PLURALITY 

The syntactic diversity of quantifier expressions is immense. For 
instance, numerals (one, ten, ... ) may also be classified as adjectives, 
and other quantifiers (all, only, ... ) may occur in adverbial positions. 
Then also, the compositional mechanism of complexes such as at least 
two, at most two may be studied in finer detail. Most striking among 
these syntactic phenomena is the ubiquitous connection between deter
miner expressions and plural forms: at least two girls, all girls, not many 
girls, etc. Should not this play some role in our formal theory? 

In general, the semantics of plurality is a mine-field of conflicting 
intuitions. Nevertheless, it is also an important phenomenon, reflecting 
our ability as language users to organize the world in collective terms. 
Moreover, given the treatment of continuous quantification in the 
above, and the analogies between mass terms and plurals, some sort of 
extension ought to be feasible. In this final section, we shall steer a 
conservative course into this dangerous area. 

Consider a simple sentence such as three toddlers were sitting on a 
fence. Its abstract form, until now, was taken to be QXY. But of course, 
in the actual sentence, X, Yare plural forms of singular predicates 
'toddler', 'be sitting on a fence'. On general Fregean grounds then, one 
might wish to bring in a semantic account for this plural formation. A 
very simple pilot example is this: 

[Pplural] = POW+([P]); 

where POW+ sends a set to the collection of its non-empty subsets. 
Many variations on this theme are possible; in particular, 'groups' may 
eventually replace mere subsets. 

Thus, quantifiers (and determiners in general) will start expressing 
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binary relations between sets A+, B+ (being short for POW+(A), 
POW+(B)). What are the appropriate truth conditions? One popular 
strategy is to copy earlier explications: 

[all] (A +, B+) if A + S;;;; B+, 
[some](A+,B+) if A+ n B+ ~ 0. 

This fails, however, for cases like most. With A = {1, 2, 3}, B = {1, 2}, 
most A are B, and yet only three out of the seven sets in A + belong to 
B+. And indeed, there is something counter-intuitive here in letting our 
quantifiers range over groups rather than individuals. The correct 
account, therefore, is more reductive: 

QA + B+ if QA U { a E CI a E A}; 
CE n+ 

where the second quantifier compares A with all its members 'partic
ipating' in sets in B+, in the old style. 

At this new level, the earlier constraints are quite easy to state. For 
instance, Conservativity remains the same. (Eventually, a suitable 
notion of 'restriction' may have to replace mere intersection, however.) 
Quantity now becomes invariance for inclusion automorphisms, as in 
the preceding section. Moreover, special purpose conditions such as 
Monotonicity remain in force; witness the plurals in, say, ~MONt: 'if all 
toddlers are sitting, then all female toddlers are sitting or standing'. Old 
results, such as the Double Monotonicity characterization of the Square 
of Opposition, will then go through. 

But of course,there is more to plurality than this uneventful lifting. 
To proceed, here is another common error in setting up truth con
ditions for plural terms. It has often been proposed to read numerals as 
adjectives, producing the following reading for, say, three toddlers 
viewed as a complex noun: 

[toddlers] = POW+([ toddler]), 
[three toddlers] = all sets of precisely three toddlers. 

Then, an example like the original one above would be read as follows, 
with three toddlers now raised to NP-position: 

some element of [three toddlersN ] belongs to POW+ ([ be 
sitting on a fence]). 

This produces a reading at least three, rather than exactly three; 
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because holding for at least one group of three does not exclude 
holding for more than three toddlers. The problem becomes more acute 
with at most three: holding for some group of at most three toddlers is 
not at all the same as holding for at most three toddlers. These 
observations point at the difficulties of an overly collective view of 
plurals. Nevertheless, they also suggest an important distinction to be 
made. 

There is a way of justifying the rejected account after all. Like 
singular NP's, plural NP's can have both 'general' and 'specific' (or 
'referential') uses. In the singular case, one has such well-known 
anaphoric differences as that between 'A girl came in, and she ... ' 
versus the unacceptable 'Every girl came in, and she . .. '. In the plural 
case, there is a similar distinction, between the admissible 'Some girls 
came in, and they . .. ' versus the unacceptable 'Most girls came in, and 
they . .. '. One possible explanation here is that certain noun phrases, 
due to some special mathematical structure of their denotations, admit 
this kind of anaphora, whereas others do not. But, it is simpler to 
assume that girls has a definite contextual reference here, with the 
whole sentence making a statement about that contextually given set. 
Accordingly, the proper anaphoric relation would be as indicated: 
'Some girls came in, and they . .. '. The latter 'referential' readings may 
be at the back of the earlier-mentioned existential truth clauses. (A 
similar account can be given for all, most, etc.) 

This point of view raises interesting questions concerning the 
semantics of the latter readings, and their connection with our standard 
approach. Notice, e.g., that on the referential reading, earlier forms of 
monotonicity may fail: at most three babies cried, taken in the latter 
sense, need not imply at most three healthy babies cried. Another theme 
which comes to the fore here is the semantic role of bare plurals and 
the-phrases. 

The latter issues lead one naturally to the topic of collective pre
dication. Obviously, not all VP-denotations can be taken to be of the 
form POW+(A) for some set of individuals A. Some predicates are 
themselves collective (gather, quarrel), others become so, either im
plicitly (weigh three tons) or explicitly (hated each other). Our previous 
discussion has been restricted to so-called distributive predicates P of 
sets, satisfying the reduction 

for all A, A E P iff ( a} E P for all a E A. 
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And then, { a} E P amounts to having a E P-, for some individualized 
version P- of P. Put differently, distributive predicates satisfy the 
following two conditions: 

- if A E P, B ~ A, then B E P (Heredity) 
- if A, B E P, then A u B E P (Homogeneity) 

(Mathematically, they are 'ideals of sets'.) These conditions are ubiq
uitous in the literature on plurals, as well as many areas of 'partial logic' 
(cf. van Benthem, 1985a). 

Other kinds of collective predication may satisfy just one of these 
two conditions, or none at all. Evidently, all this deserves thorough 
exploration. But, are quantifiers in our sense essentially involved here? 
For instance, many of them do not go well with collective predication: 
all boys lifted the piano (?), at most two girls quarrelled (?). Such 
expressions seem felicitous only (if at all) in the above referential 
readings. In view of all these uncertainties, we have refrained from 
'collectivizing' the theory of quantifiers and determiners in this book -
even though there seem to be no difficulties a priori in doing so. 
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ALL CATEGORIES 

Our investigation up till now has been concerned with the linguistic 
category of determiners, including quantifiers. But, the techniques 
developed can be brought to bear upon arbitrary grammatical types: 
adjectives, connectives, adverbs, etc. To broaden our scope, we will 
work against the background of an extensional categorial grammar, with 
basic types e ('entity') and t ('truth value') - as in Section 1.1. - allowing 
formation of functional types (a, b) ('from a-denotations to b-denota
tions'). Models will then be semantic structures (Da)a E TYPE, with base 
domains De' D, and a recursive construction rule D(a, b) = DbDa. 
Chapter 7 is devoted to further theoretical study of this mechanism as 
such. 

As was observed in Chapter 1, some categories of expression a seem 
to be 'interpretatively free', allowing arbitrary denotations in their 
associated domains Da - whereas others are more constrained. 
Naturally, we shall be especially interested in the latter, searching for 
enlightening constraints on denotations. In principle, these may be quite 
different from those encountered for determiners - but, there is 
certainly no harm in looking for relatives of the earlier basic conditions 
across all categories. Before proceeding to the most general case, we 
consider some specific examples. 

3.1. CONNECTIVES 

One basic example to start from is that of connectives, the other main 
type of traditional logical constant. In natural language, the usual 
Boolean connectives occur primarily as operators on predicates, with 
less frequent inter-sentential uses. (Eventually, they may be viewed as 
operations on all types resulting in a truth value; cf. Keenan and Stavi, 
1982.) For instance, the former use underlies the very linguistic 
formulation of Conservativity: 

QXY iff QX( Y and X). 

Likewise, Monotonicity inferences involved predicate conjunction and 
disjunction. 

55 
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Earlier notions may be transferred to this new category. Thus, 
Quantity, the earlier hallmark of logicality, now acquires the obvious 
sense that 

for all permutations n of E, and all A ~ E, 
f(n[A)) = n[f(A)], 
for unary connectives f 
And likewise for higher ones. 

I.e., quantitative connectives commute with permutations. The force of 
this requirement is expressed in the following 

EXAMPLE. Every Boolean expression in A, B, u, n, - (with 
complement taken with respect to the universe E) defines a quantita
tive connective. This is so because permutations n commute with 
unions, intersections and complements: 

n[C U D] = n[C] U nIDI, n[C n D] = n[C] n nIDI, 
n[E - C] = E -nrC]. 

But also conversely, every quantitative connective has a Boolean 
definition for each tuple of arguments. For, consider A, B ~ E. For 
each of the four zones in the Venn diagram: A n B, A - B, B - A and 
E - (A U B), f(A, B) either contains it or avoids it altogether. (For 
instance, if f(A, B) were to non-trivially intersect A n B, one could 
permute two individuals in A n B across the boundary - leaving all 
other objects in E fixed - which would leave A, B invariant, while 
changing f(A, B): a contradiction.) So, f(A, B) must be some disjunc
tion of the above four sets: i.e., a Boolean compound of A, B. 0 

Thus, Quantity again expresses an entirely natural form of logicality 
in this setting, linking quantifiers to truth-functional connectives. 
Evidently, the above argument goes through for arbitrary k-ary con
nectives as well. Still, it does not enforce one uniform definition for all 
argument tuples. To get the latter, postulates are needed relating values 
at different arguments. One example will be presented below. 

The other general conditions on quantifiers are less plausible in this 
case. Notably, the complement operation (not) is universe-dependent; 
whence it fails to satisfy Extension. Likewise, Conservativity has no 
direct appeal here. But then, new conditions in the same spirit may be 
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forthcoming for special categories. For instance, for many operations C, 
a principle of Restriction is plausible: 

if E ~ E', then, for A 1, ••• , Ak ~ E', 
CE(A 1 n E, ... , Ak n E) = CdA], ... , A k) n E (REST) 

This condition holds for all Boolean set connectives; and that is no 
coincidence: 

THEOREM: QUANT, REST characterize the Boolean operations 
uniformly. 

Proof By a judicious use of Restriction, arbitrary values for f may be 
written down in terms of its 'E, 0-truth table'. For instance, 

fE(A, B) = «A - B) n fE(E, 0» U «A n B) n fE(E, E» U 

«B-A) nfE(0,E» U «E-(A U B» nfE(0,0». 0 

In addition, various special purpose conditions arise here. One useful 
property, already encountered in Section 2.9., is the well-known mathe
matical condition of Continuity, in the sense of preserving unions: 

for all families {Ai liE I} of subsets of E, 

fE( yAi) = Y fE(A i)· 

Actually, Continuity makes most sense when applied to unary adverbs 
and adjectives, rather than connectives (see Section 3.2. below). 

Moreover, earlier family patterns also emerge in this new setting. For 
instance, there are Squares of Opposition for connectives, of which the 
following is a simple illustration. 

EXAMPLE. Binary truth functions. 
In the area of truth tables, connectives f may be regarded equi

valently as relations between subsets of some set {x}, being 0 (0) and 
{x} itself (1). Conservativity then means that f(O, 1) = f(O, 0). Variety 
requires that f(l, 0) fc. f(l, 1). Now, inspection of truth tables shows 
that, modulo these two conditions (cf. Section 1.4.): 

the doubly monotone connectives form precisely the Square 
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For instance, suppose that J has type ~MONt. Case (1): J(O, 1) = J(O, 0) 
= 1. Then J(l, 0) = 0. (Otherwise, J(l, 0) = 1, J(l, 1) = 1 (MONt), 
contradicting V AR.) So, again by V AR, J(I, 1) = 1. I.e., J is material 
implication. Case (2): J(O, 1) = J(O, 0) = 0. As before, J(l, 0) = 0, 
J(l, 1) = 1. But then, by ~MON, J(O, 1) = 1: a contradiction. So, this 
case cannot occur. 0 

A much more general survey of such 'Squares' across natural languages 
may be found in Lobner (1984). 

In addition to such denotational constraints, the earlier inferential 
concerns still apply in this setting (d. Sections 1.5., 2.6.). We may 
classify common algebraic conditions on connectives (idempotence, 
commutativity, associativity, and the like) as patterns of inference. And 
then, the earlier question may be raised which classes of connectives 
are determined by their characteristic patterns of reasoning. Here is one 
illustration. 

Query: Which triples of QUANT operations on sets satisfy the 
complete set of Boolean identities in I, 1\, v? 

Even the earlier observed phenomenon of 'multiple solutions' has 
been known for a long time in this particular area, as the 'duality' of 
1\, V. Here is one answer for a special case. 

THEOREM. In propositional truth value semantics, the complete set of 
Boolean identities has exactly two solutions: 

I, 1\, V and I, v, 1\. 

Proof First, there are at most these solutions. Various valid identities 
narrow down the range of possible candidates: 

II X = X: I can only be identity or value reversal. 
X 1\ X = X: 1\(0,0) = 0,1\(1,1) = 1. 
X 1\ y= Y 1\ X: 1\(0,1)= 1\(1,0). 
(X 1\ I X) 1\ Y = X 1\ I X: if I were the identity, then X 1\ Y = X 

would be valid - and a contradiction arises: choose X = 0, Y = 1: 
1\(0, 1) = O/choose X = 1, Y = 0: 1\(1,0) = 1. Therefore, I denotes 
value reversal. 

For disjunction, similar observations imply V(O, 0) = 0, v(l, 1) = 1, 
V (0, 1) = V (1, 0). Moreover, because of the mixed principle X 1\ (Y 
V X) = X: V (0, 1) "I' 1\ (0, 1). (Otherwise, if V (0, 1) = 1\ (0, 1) = 0, 
then set X = 1, Y = 0: 1\(1, V(O, 1» = 1\(1,0) = ° "I' 1: the X-value. 
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Or, if V(O, 1) = 1\(0, 1) = 1, setting X = 0, Y = 1 leads to a similar 
problem.) In all, this leaves just two possibilities for 1\, V. 

That there are at least these two solutions follows by anyone of the 
familiar duality arguments. D 

In this inferential perspective, the two main kinds of logical constant 
may also be combined. This may cut down the number of possibilities 
on either side, as 'mixed inferences' form additional constraints. Thus, 
we have a question (cf. Section 2.7.): 

modulo Quantity, does the logic of all, some, or, and, not determine 
the interpretation of these logical constants uniquely? 

Appendix: Quantifiers Revisited 

Within a general categorial framework, quantifiers may also be regarded, 
not primarily as determiners or noun phrases, but as reducers of 
argument places. Thus, e.g., the phrase someone turns the binary 
relation loves into the unary property love someone. This point of view 
is the basis of predicate logic as developed in Quine (1966). Its major 
operations on predicates are 'permutation', 'identification' and 'projec
tion'; of which the latter two are relevant here: 

id(R) =def {x I (x, x) E R}, proj(R) =def {x I 3y(x, y) E R}. 

There is a connection here with the linguistic phenomenon of 
'argument drop', as displayed in the following examples. Mary washes 
the clothes can go to Mary washes [somethingl ('right projection'), to 
[someone'sl washing the clothes ('left projection'), or to Mary washes 
herself ('reflexivization'). In a sense, the following argument explains 
this scarcity of argument drop mechanisms. 

Let us restrict attention to relation-reducing functions sending binary 
relations to subsets of their domains. The above examples satisfy 
Quantity as a general postulate. Moreover, their special distinguishing 
feature turns out to be an earlier special purpose condition: 

THEOREM. The Quine operations id, proj are essentially the only 
relation-reducing functions satisfying Quantity and Continuity. 

Proof Let E be any universe, with a binary relation R on it. 
Any function f satisfying the above two conditions will map R to 
U {f({ (d, e)}) I (d, e) E R}. So, it is to be determined what can be 
assigned in these singleton cases. 
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- (d, d) E R: f assigns either 0 (1), or { d} (2). 
By Quantity, if case 2 occurs for any object d, it will occur for all 

d' E E. (Consider a permutation interchanging d, d', while leaving all 
other objects fixed.) 

- (d, e) E R, d ~ e:f assigns either 0 (3), or { d} (4). 
Again by Quantity, case 4 either occurs for all couples, or for none. 
Summing up, there are four possible cases: 

case 1 + 3: feR) = 0, case 1 + 4: feR) = proj(R) - id(R), 
case 2 + 3: feR) = id(R), case 2 + 4: feR) = proj(R). 0 

This second view of quantifiers is also relevant when determiners are 
considered, not in subject, but in direct object position (Mary loved 
every lamb). In the latter position, quantifiers stand for functions on 
sets and binary relations, yielding sets of individuals. For instance, 

[ every] ([ love], [lamb]) = { e EEl [lamb] ~ { d I (e, d) E [love]}}. 

In a relational perspective, there is a ternary relation involved here, 
between an individual, a binary relation and a property: QE( e, R, A). 
What we want, then, is a reduction to the original treatment of Chapter 
2. One strategy is to use a principle of Locality (with Re =def { d I (e, d) 
E R}): 

QE(e,R,A) iff QE(e',R',A), whenever Re=R~,. 

Then, given suitable versions of QUANT, EXT, CONS, the binary 
relation {(A, Re) I QE( e, R, A)} can be treated exactly like before. This 
ad-hoc move becomes justified in Chapter 7, as an instance of a general 
type shift rule inducing a canonical change of meaning. 

3,2. GENERALIZATIONS 

Once certain analogies have been observed between different cate
gories, a bolder leap becomes possible, to obtain denotational con
ditions that make sense in all categories. The prime example is again 
Quantity: 

Let n be any permutation of the universe E = De. Setting n equal to 
the identity on the other base domain D t , this function may be lifted 
recursively to all domains Da by stipulating, for f E D(a, b): 

n(t) = {(n(x), n(y» I (x, y) E f}. 

An object x in the domain of any category will now be said to satisfy 
Quantity if, for all such permutations n, n(x) = x. 
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For determiners and connectives, this produces the earlier formula
tions. But now this logicality constraint also has effects in other 
categories. Indeed, some categories, such as De itself, are entirely 
without logical items. (How does this tie in with their 'interpretative 
freedom'?) In others, only very few qualify. Thus, among binary 
relations (type (e, (e, t))), Quantity leaves only identity and its Boolean 
compounds as logical constants. Likewise, in type (e, (( e, t), t)), only 
elementhood (E) and its variants remain. All this is exactly as it should 
be. 

The preceding examples illustrate the effect of Quantity in various 
special categories. In fact, one can find explicit counting formulas for 
the logical items in all these cases. One obvious general question then is 
to find a universal counting formula, which tells us, for each type a (and 
universe of size n) how many logical items occur in the domain Da. For 
instance, exactly which categories have only logical items? And which 
categories lack logical items? 

Next, one can speculate a bit about the other basic constraints. 
Extension becomes less plausible now, because of context-dependent 
items such as negation. E.g., when A ~ E ~ E', not-A will not denote 
the same predicate in E as in E'. Still, there remains an obvious 
stability, in that, on individuals in E, the new set makes the same 
decisions as the old one. Formally, then, we have again a principle 
of Restriction: 

if AI, ... ,Ak ~ E ~ E', 
then fdAl' ... ' A k ) n E = fE(A l, . .. , A k ). 

If this is to be stated in a form suitable for all categories, intersection 
will have to be replaced by a suitable notion of restriction. Generally, 
each choice of a universe E = De generates a model structure (Da(E ))a; 
which changes to (Da(E'))a when E ~ E'. Note that not all levels 
Da(E) need be included in Da(E'): there are some well-known pitfalls 
here. The proper view is rather that items in DaCE') can be restricted to 
items in D.( E ). We shall not pursue the technicalities of this notion 
here. But its intuitive intent is clear. 

The above condition also suggests a stronger version, already 
employed in Section 3.1.: 

if E,Al' ... ,Ak ~ E', 
then fECAl n E, ... ,Ak n E)=fdAl, ... ,Ak) n E. 

The latter holds of Boolean connectives; but not in general of all 
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determiners (now viewed as functions). In the latter area, it implies that 
DE(A (I E)(B (I E) iff DE.AB: whence D would be downward 
persistent. 

Incidentally, the present functional type theory may not always be 
the most advantageous setting for our study. For an equivalent, but 
often more convenient relationalformat, cf. van Benthem (1983a). 

Finally, Conservativity would express in general that the left-hand 
argument of our functions always plays some special 'covering' role. As 
a rule, this need not be the case. But there are certainly many instances 
of this phenomenon. Our final example illustrates this. 

EXAMPLE. Recall the earlier restriction with respect to intersective 
adjectives (Section 1.1.): 

fE( B) = B (I A, for somefixed set A ~ E. 

Here, A is the E-extension of the adjective - and, if the latter is 
suitably 'absolute', fE will satisfy the strong version of the Restriction 
principle. Moreover, it is introspective, in the sense that fE(B) ~ B for 
all arguments B. Together, these two properties are characteristic for 
intersective adjectives. Each introspective strongly restrictive operation 
on E can be represented as an adjectival restriction to some suitable set 
A, viz. 

A =def U fE(X), 
X<;;;.E 

Claim. fE( B) = B (I A, for all B ~ E. 
Proof '~': fE(B) = B (I fE(B) ~ B (I A. ';;;;? ': for arbitrary X ~ E, 

fdX) (I B = fx n B(X (I B) (by Restriction) = fE(B) (I X (I B (again 
by Restriction). Hence fE(X) (I B ~ fE(B), B (I A = B (I U fE(X) = 

U (B (I fE(X» ~ fE(B). 0 

This example will revisited in Section 3.3. 
Finally, earlier special purpose conditions can be generalized too. 

One prominent example is Monotonicity. First, introduce a suitable 
notion I;;; of inclusion in all types as follows: 

on Dp I;;; is ~; on De> it is the identity =; 
on D(a. b),f I;;; gif, for all x E Da,f(x) I;;; g(x). 

This coincides with set inclusion for D(e, t). In general, I;;; may be thought 
of as a universal relation of logical consequence in all categories. With 
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respect to it, functions can be 'directly' or 'inversely' monotone in their 
argument in obvious ways. (These will be the denotations of expres
sions which 'respect logical consequence', one way or another.) 

As before, one special case deserves attention. Notice first that all 
functional types can be written in one of two forms: (aI, (a2, ... (an, e) 
... )) or (aI' (a2, ... (an, t) .. . )) - i.e., as functions of n arguments 
going to either entities or truth values. Then, such functions can be 
monotone in all these arguments. For instance, special logical interest 
would attach, in each category, to the quantitative multimonotone 
functions. Can we extend our previous characterization theorems for 
doubly monotone determiners to this general case? 

3.3. CROSS-CATEGORIAL CONNECTIONS 

There is another reason for investigating categorial structure beyond 
one single type. Up till now, we have considered conditions valid for 
one category, and their possible generalizations elsewhere. But, there is 
also a different type of connection, even between categories with quite 
different kinds of basic constraints. As categories are intertwined, 
semantic constraints do not live in isolation: they may interact. 

Propagation of constraints. For instance, consider the basic triad of 
Chapter 1: noun ((e, t)), noun phrase (((e, t), t)) and determiner (((e, t), 
(( e, t), t))). As has been observed in Chapter 2, the first seems to be 
interpretatively free, whereas the third is subject to Conservativity. But 
then, ipso facto, the second may have been constrained already: if it 
turns out that not all possible noun phrase denotations can be obtained 
in the form DX for some conservative determiner D and arbitrary noun 
X. In this particular case, Keenan and Moss (1985) point out that, in 
fact, Conservativity is still quite generous: every noun phrase denotation 
is thus obtainable. But Conservativity in combination with Quantity 
becomes restrictive: not all possible noun phrase denotations can be 
obtained in this way, as we shall see below. 

In this perspective, various questions arise. For instance, fixing one 
constraint on a functional category (say, Conservativity), one may study 
its 'transmission' behaviour. For various semantic conditions on its 
argument category, what are the resulting restrictions (if any) on its 
value category? And in any case, will such restrictions tend to 'die out' 
for categories which lie more application steps away? Another example 
is that of our earlier universal constraints, applicable to all categories, 
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such as Quantity. Ought not these to be 'self-propagating', in the sense 
that, if a function and its argument obey the constraint already, then so 
do its values? (For Quantity, the answer happens to be affirmative.) 

Here is a concrete example illustrating the original case. We shall 
characterize those noun phrase denotations X which can be obtained in 
'Det N' form for some logical determiner D (or Q). First, define 

c(X) =def n { V I for all Y, Y E Xiff Y n V EX}. 

If VI' V2 have this 'witness' property, then so does their intersection 
VI n V2 (cf. Thijsse, 1985). For finite domains then, the above defini
tion yields a smallest witness set for X. Next, define 

c*(X) =def { V E X I V is contained in c(X)}. 

Now, the desired characterization is this. 

THEOREM. Xis logically det N-representable if and only if 

c*(X) is closed under permutations of c(X). 

Proof. First, suppose that X = {B I DAB} for some suitable D, and 7r 

is some permutation of c(X). Now, c(X) ~ A, by Conservativity of D 
and the definition of c. Also, 7r can be extended to a permutation 7r+ on 
the whole universe by adding the identity outside of c(X). Then, if V E 
c*(X) - i.e., V E X, V ~ c(X) - we have DAV, D7r+[A]7r+[V] (by 
Quantity for D), whence DA7r[ V], 7r[ V] E X, 7r[ V] E c*(X). 

Conversely, let c*(X) have the stated closure property. Then, set A 
= c(X), and define a determiner D as 

{(7r[A], 7r[B]) I 7r is some permutation ofthe universe, and B EX}. 

It may be checked that D is conservative and quantitative. Moreover, 
the closure property guarantees that {B I DAB} remains just X. D 

This result gives a criterion for checking whether a given set of sets X is 
a possible denotation of the above form. 

This general perspective on the contents of categories invites many 
further questions. For instance, a notable empirical phenomenon in 
natural languages is the limited range of types occupied by actual 
expressions. The following table illustrates this: 
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proper names: e, 
common nouns: (e, t) 
transitive verbs: (e, (e, t» 
adjectives: « e, t), (e, t» 
determiners: « e, t), « e, t), t» 
modifiers: « (e, t), (e, t», « e, t), (e, t») 

sentences: t, 
intransitive vert<;: (e, t) 
adverbs: « e, t), (e, t» 
noun phrases: « e, t), t) 
prepositions: «( e, t), t), « e, t), (e, t») 

This list is not exhaustive; but it does illustrate the kind of categories to 
be expected. 

One measure of semantic complexity here is the notion of order, 
assigning natural numbers o( a) to types a as follows: 

o(e)=o(t)=o 
o«a, b» = max (o(a) + 1, o(b». 

The above expressions have orders 0, 0, 1, 1, 1,2,2,2,2, 3, 3, respec
tively. Various observers have noted that third-order seems to be a 
threshold for natural languages. There may be a syntactic explanation 
of this phenomenon, having to do with the complexity of type assign
ments in categorial grammars needed for linguistic description (cf. 
Buszkowski, 1982). But it would also be of interest to find some more 
semantic explanation - perhaps in terms of some expressive complete
ness result for these lower types with respect to the higher ones. 

The frequent occurrence of denotational restrictions may also in
dicate the need for a change in the usual model theory for our type 
system. Instead of the full function domains D(a. b), certain smaller sets 
might suffice, as long as these contain all relevant maps. Technically, 
then, the background model could be any Cartesian-closed category 
(this time, in the sense of mathematical 'Category Theory'!); perhaps 
provided with additional products and sums of type domains. 

Boolean structures. A pioneering approach toward charting this full 
categorial area is that of Keenan and Faltz (1985). These authors 
emphasize the Boolean Algebra structure found in many domains Da; 
viz. in all those whose type ends in a 'final' t. (Incidentally, they also 
make an interesting case for having a different basic type structure, 
starting from p (=(e, t»; t rather than e; t.) This viewpoint does not 
necessarily lead outside of the full function domains - but it certainly 
suggests admitting arbitrary Boolean algebras as well. 

The Boolean structure of many categories manifests itself in the 
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relative freedom with which not, and, or can attach to the most diverse 
expressions. It is also involved in many of the preceding topics. For 
instance, the earlier general inclusion relation ~ is nothing but the basic 
Boolean inclusion ~ on domains which are Boolean algebras. One 
Boolean notion of immediate interest is that of a ~ -automorphism on 
(suitable) domains Do. The most robust items in a category, from this 
perspective, would be those objects in Do which are fixed points of all 
its ~ -automorphisms. As has been observed before (cf. Section 2.9.), 
such automorphisms on the special domain D(e, t) correspond exactly to 
underlying permutations of the individual domain De. And in 
general, all permutations 1l as defined in Section 3.2. induce ~ -auto
morphisms. But the converse fails: e.g., there are ~ -automorphisms in 
D«e, t), t) which are not generated by any underlying permutation of 
individuals. In fact, Boolean invariance soon becomes an excessive 
strengthening of our earlier notion of logicality. 

One central topic in this area is the variety of morphisms connecting 
algebras Do, Db (whether or not occurring 'encoded' in D(a, b»' As 
Keenan and Faltz point out, these occur in various mathematical sorts. 
Notably, there are Boolean homomorphisms preserving the Boolean 
operations - such as proper names in the NP category, satisfying the 
equivalences 

Olga doesn't drink +-+ not Olga drinks 
Olga drinks and smokes +-+ Olga drinks and Olga smokes. 

Another major example are transitive verbs: 

kill not every wasp ....... not kill every wasp 
kill three flies or one mosquito +-+ kill three flies or kill one mosquito. 

Other expressions show only part of this behaviour. Notably, certain 
adjectives and prepositions are continuous items, respecting arbitrary 
disjunctions: 

with a pen or a knife +-+ with a pen or with a knife 
wicked (mother or daughter) +-+ wicked mother or wicked daughter. 

Finally, some expressions may only preserve inclusion ~ ; or even lack 
mathematical extras altogether. 

Keenan and Faltz exploit all these structures for the purpose of 
linguistic subcategorization, as well as the study of structural analogies 
across various types of expression. It remains to be seen, however, how 
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much of all this mathematical structure is real, and how much is an 
artefact of our description. 

EXAMPLE. Homomorphisms reduced. 
Let J be a homomorphism in a category «a, t), (b, t». As J respects 

arbitrary unions, its image for any X in D(a. I) (viewed, for convenience, 
as a subset of DI/) is equal to U XE xJ({x)). Now, since homomorphisms 
send unit elements to unit elements, J(Da) = Db' So, Db = U x E DJ({X)). 
Moreover, as all these atoms are disjoint (another relation preserved by 
homomorphisms), their J-images will be disjoint subsets of Db' (Some 
J({x)) may be empty.) So, a reverse function f: Db -> Da can be 
defined unequivocally, by setting 

/(y) is that x in DI/ with y E J({ xl). 

Then, in general, the following reduction obtains, for all X s:;;; D", 

J(X) = {y E Dh I f(y) E X} (= f-l[X]). 

So, J can be retrieved from}. Conversely, any function g from Db to Da 
will induce a unique homomorphism g from D(I/.I) to D(h. I) with this 
scheme. Therefore, 

the homomorphisms in D«I/. I). (h. I» correspond exactly to 
arbitrary functions in D(h.I/)' 

As a special case, homomorphisms in D«I/. I). I) correspond to arbitrary 
objects in DI/' 

This reduction makes sense, e.g., for transitive verbs as treated by 
Keenan and Faltz, in type « e, t), t), (e, t). Applying the above perspec
tive, these are 'really' of type (e, (e, t» - which is indeed their intuitive 
habitat. Conversely, let g be the verb see in the latter type. The 
corresponding function gin « e, t), t), (e, t) will assign, to each NP-type 
object X, the set of all individuals y in De whose g(y) belongs to X. This 
will produce the correct meaning at the higher level, provided that we 
read g(y) as the set of all individuals seen by y. There is also a 
connection here with the earlier-mentioned type shift for determiners in 
direct object position, which will not be spelled out. 

On the other hand, there are several categories which in principle 
could harbour Boolean homomorphisms, but in fact do not. The 
determiner category D(e. I). «e. I). I) is a notable example: there seem to be 
no non-trivial homomorphic determiners. (In the light of the above, 
these ought to be derived from 'choice functions' in D(e, I). e.) Is there 
any explanation for this phenomenon, here and elsewhere? 
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Keenan and Faltz themselves treat another interesting case of 'type 
reduction' (cf. Section 3.2.). 

EXAMPLE. Intersective adjectives. 
Expressions such as blond, wicked have the following two formal 

characteristics: (i) they respect unions, as noted above, and (ii) they 
are 'introspective': e.g., blond beast -+ beast, wicked queen -+ queen. 
Here again, a reduction is possible, to an underlying 'absolute' notion. 
Let j in D(a, f), (a, f) have these two properties. Define F ~ Da as 
{x E Da I j({x}) = {x}}. By a simple calculation, then, 

j(X) = X (") F, for all X ~ Da. 

This explains how such adjectives can also serve as (and indeed are) 
properties of individuals. 

The principles behind these examples will be discussed at the end of 
this section. For the moment we present one final cross-categorial topic, 
due to Partee (1985), another source of examples in the present general 
spirit. 

Type change. Consider the triad of categories e (proper names), (e, t) 
(nouns) and « e, t), t) (noun phrases). Partee observes that various 
natural operations run between these categories. For instance, individ
uals can become noun phrases via Montague's celebrated lifting rule 

x f--+ A Y· Y(x) 

or, they can become predicates via their singletons 

x f--+ Ay· y=x 

(M); 

(I). 

Then, it may be asked which special operation from NP-denotations 
to N-denotations makes the diagram of Figure 15 commute (see Figure 
15). 

One natural answer is this: 

there is a unique Boolean homomorphism from D«e, f), f) to D(e, f) 
making the M, I-diagram commute, viz. Montague's well-known ex
plication for the verb be: 

A Y . AX • {x} E Y. 

Incidentally, this rule is also what would be obtained by lifting ordinary 
equality (type (e, (e, t») to the transitive verb type as indicated in the 
example of homomorphism reduction. 
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Going in the opposite direction, Partee has also asked for linguist
ically natural operators (say, syncategorematic ally encoded) sending 
N-denotations to NP-denotations. For this issue, our earlier perspective 
becomes relevant. The most obvious way of getting from (e, t) to « e, t), 
t) is by prefixing a determiner. Which determiners D are reasonable 
here? In general, given any set of individuals A, D will produce a set of 
sets {B I DAB} - in which process the original A may get lost. But, 
there is a canonical procedure for recovering something like A: viz. our 
earlier formation of a smallest witness set c(X), for any set of sets X. 
Thus, we might restrict attention to the determiners D 'encoding' their 
arguments in the following sense: 

for aliA, c(D(A»=A (+) 

Is this a significant restriction? As it happens, many candidates still pass 
this test - and additional considerations are needed to arrive at 
Partee's own proposed solution (being a and the). But at least, one 
suggestive result is worth stating: 

THEOREM. The quantifiers satisfying (+) are precisely those obeying 
Conservativity and Variety. 

Proof. First assume (+). Conservativity follows at once. Also, if A is 
non-empty, then let A' be an arbitrary proper subset of A. Since A' is 
not a witness set for {B I DAB}, there must be some B such that DAB 
(iff DA(B 11 A» not: iff DA(B 11 A'): and hence B 11 A, B 11 A' are 
two sets as required for Variety. 

Conversely, assume these two postulates. Let A ~ 0. Assume also 
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DAA. (The other case is similar.) I.e., (0, n) E D, where n = IA I. Now, 
let A' be any proper subset of A, say with size m < n. Moreover, by 
Variety, let k be the maximal size of a subset B of A without DAB. We 
compare m and k. If k ~ m, then some B of size k contains A': and we 
have DAA, not DAB, yet A () A' = B () A' = A': and A' cannot be a 
witness set. If k < m, then some B of size k lies within A'. Let B+ = B 
united with some element of A - A'. By the maximality of k, we have 
DAB+ - although still not DAB. But, B () A' = B+ () A' = B: and 
again, A' is not a witness set. D 

These various examples point at general type-change mechanisms in 
natural language. Many expressions do not stay within one single 
category: they can travel, within certain constraints. For instance, in the 
Partee example, the Montagovian transition for proper names occurred, 
from e to « e, t), t). Essentially, the same rule is invoked by Keenan 
and Faltz, when arguing for the adequacy of a basic type structure p, t. 
This transition was only a special case of the rule encountered in 
'homomorphic inflation', which went from (b, a) to (a, t), (b, t). This 
again may be viewed as an instance of the 'Geach Rule', used already in 
Section 1.1. to account for the various uses of negation: sentential, 
predicative, and otherwise. The mechanics of this kind of type change 
will be studied in Chapter 7. In particular also, the associated 'recipes' 
will be generated for obtaining the 'lifted' meanings in the new types. As 
may be guessed from the preceding examples, these will come in the 
form of lambda/application-terms in a type-theoretical language. Given 
the concerns of this chapter, it will be of special interest to trace the 
metamorphoses of our denotational constraints through such type 
jumps. 

The preceding examples exhibit a 'combinatorial' kind of type 
change, where expressions do not 'really' change their meaning: they 
merely adapt opportunistically to their environment. More substantial 
'mathematical' examples are the earlier cases of individuals going to 
their singletons, or adjectives reducing to properties. (Another example 
would be the extraction of a predicate from an NP denotation which is 
a principal filter generated by that predicate.) In a first approximation, 
these would be the transitions whose associated recipes employ identity, 
in addition to lambdas and application. (Thus, the type-theoretical 
language acquires the full power of higher-order logic; cf. Gallin, 1975.) 
Finally, there are also type changes with more conceptual content than 
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the above, such as nominalizations turning predicates into individuals. 
The latter phenomenon will not be investigated here. 

The three kinds of type change thus identified share one eommon 
feature: one single expression adapts by itself to various linguistic 
contexts. But, the Partee example also introduced lexicalized type 
changers, such as determiners changing predicates into NP denotations 
in a special formal way. Now, in a sense, every functional expression is 
a lexicalized type changer, when applied to expressions of its argument 
type. But in general, this is only one, combinatorial aspect of its 
meaning. There are quite a few modest, but crucial expressions, how
ever, whose sole purpose seems to be to effect type changes beyond 
what would be permitted by the 'self-changing' mechanisms developed 
in Chapter 7. Examples are the reflexivizer -self, turning binary pre
dicates into unary properties, or the lambda-extractor such that, turning 
sentences into predicates (cf. Keenan and Faltz, 1985). A systematic 
study of such particles would be very useful. 

With these themes, we conclude our survey of a general categor
ial approach to the study of admissible denotations for linguistic 
expressions. 



CHAPTER 4 

CONDITIONALS 

Recently, the 'extensional fragment' of natural language has come into 
its own as a source of important semantic concerns. The previous 
chapters bear witness to this tendency - postponing the well-known 
puzzles of intensionality. Nevertheless, our investigation is not at all 
restricted to the extensional realm - and we shall study some central 
intensional notions in the next two chapters. The first topic is that of 
conditional statements, perhaps the principal concern of logic, which 
shows striking parallels with the earlier area of determiners. 

General questions concerning the existing multitude of semantic 
accounts for conditionals are the following. About the language of such 
statements, should conditionality be an operation upon propositions, or 
rather a relation between these? As for the semantic apparatus, how 
can one judge the need for, or the relative merits of the various types of 
model and truth definition proposed in the literature? Finally, as to the 
'logical evidence', what is the status of the intuitions of validity, often 
invoked as a touchstone for the conditional logic resulting from some 
particular analysis in this argumentative area? 

These are issues which may give rise to lively, but also inconclusive 
philosophical debate. For instance, operational and relational views of 
conditionals both have their adherents; and some people even entertain 
both, to the point of confusing object-language and meta-language of 
their formalization. To mention another example, the validity of a 
principle such as Conditional Excluded Middle (if X, then Y, or, if X, 
then not Y) has strong intuitive support, but also provokes grave 
doubts ... sometimes within the same observer. What we need, then, is 
a general unifying perspective, enabling us to arrive at more definite 
issues and results. 

In this chapter, conditional statements if X, then Y will be analyzed 
in the generalized quantifier perspective of the preceding chapters. That 
is, the conditional particle if will denote a relation between sets of 
antecedent and consequent occasions. 

It is not claimed that this approach is the uniquely correct one for 
the study of conditionals. Broadly speaking, there are two major 
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directions in logical studies of conditionality: one 'vertical', having to do 
with iterations of conditionals and the resulting implicative relations, 
another 'horizontal', concerned with the interaction between single 
conditionals and the Boolean connectives and, or, not. The former 
direction is most prominent in the modal 'entailment' tradition (d. 
Hughes and Cresswell, 1968), the latter in the study of counterfactuals 
and related topics (cf. D. Lewis, 1973). Our approach is partial to the 
horizontal direction, for reasons explained below - although not 
irrevokably so. 

In developing this special theme at length, we also hope to provide a 
new set of questions for philosophical logic in general, beyond the usual 
score of completeness theorems and more completeness theorems. 

4.1. CONDITIONALS AS GENERALIZED QUANTIFIERS 

Throughout the subject of logic, one finds two views of conditionals. 
Sometimes, implication is a mere connective, then again it is taken to 
express a relation between propositions. The tendency is of long 
standing. Thus for instance, Immanuel Kant listed 'hypothetical pro
positions' under the heading of 'Relation' in his famous Table of 
Categories. Again, both points of view occur intermingled in C. I. 
Lewis' account of his intended 'strict implication'. If this is a confusion, 
as canonical textbook wisdom has it, it is a remarkably tenacious one -
a phenomenon which itself requires explanation. 

In order to arrive at a perspective doing justice to both viewpoints, 
one can take a cue from natural language. Unlike coordinating con
nectives such as and, or, the conditional particle if functions in sub
ordinate constructions (if X) Y; where, categorially, if X is a sentence 
modifier. As usual in such linguistic contexts, the full denotation of the 
expressions 'X', 'Y' may be involved - i.e., the ranges of occasions 
(worlds, situations, models) where these are true, not just a truth value 
on one specific occasion. Thus, the force of a conditional particle may 
be compared with that of ordinary determiners, such as all, most, which 
exhibit similar linguistic behaviour. (The precise nature and extent of 
this analogy need not be explored here, as no claims will be staked on 
it. To mention just one more possibly fruitful parallel, the particle then 
seems to function much like an anaphoric pronoun.) 

Accordingly, we shall read if X, (then) Y as expressing some 
semantic relation [if] ([X], [Y]) between the sets of antecedent and 
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consequent occasions. Again, our principal task will be to delimit a 
range of suitable conditional relation between such sets. Further 
questions will then arise in due course. 

More generally, we will have, for any universe E of 'relevant' 
occasions, and A, B ~ E, 

ifEAB, 

meaning that the conditional relation holds in E between A and B. 
Examples are inclusion (all), majority (most) or overlap (some). A 
context-dependent example, where E is essential, is relatively many. 
Eventually, we shall restrict this general pattern to the context-neutral 
case. 

The view of conditionals as relations between sets of occasions 
would seem to favour what are called generic conditionals over 
individual ones. The former refer to sets of events, as in if (i.e., whenever) 
she comes, she quarrels. The latter are about single events, as in if he 
came, he cried. Our view is that both statements presuppose variety of 
occasions. The first is about several events in one world, the second 
about one event in several possible worlds. The present concept of 
'occasion' is meant to include both, as well as their combinations. 
Against this general background, specific choices of universes E may 
account for particular kinds of conditionals. For instance, the location 
of some distinguished 'actual world' in E may be important when 
treating the contrast between indicative and subjunctive conditionals. 
(Indeed, E itself may consist of some set of worldlines connected with 
that actual world.) Henceforth, the abstract common pattern is our 
central concern. 

Another notable aspect of the 'generalized quantifier approach is that 
iterated conditionals become awkward to handle. (The reflects the fact 
that natural language has no direct means of iterating determiner 
expressions.) In itself, this need not be a defect. There is a well-attested 
danger of facile logical formalism leading us into iteration that just is 
not there in ordinary speech. For instance, on the causal reading of 
conditional relations between (sets of) events, iterated conditionals do 
not make sense; unless higher layers are interpreted in a different spirit. 
Such a meaning shift is also discernible in standard examples of 
iteration in the literature, such as if this glass breaks if hit, it will break. 

Our notation, differing as it does from the usual arrows, stresses all 
these points. As in earlier chapters, we shall stick with atomic 
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statements if XY, where 'X', 'Y' may be complex Boolean terms. Most 
fundamental types of conditional inference can already be expressed by 
these means - although one may eventually enrich the language some
what, say by adding outer disjunctions (as in Conditional Excluded 
Middle). (From a more general logical point of view, one might even 
study the entire range of first-order assertions about the conditional 
relation, of course.) 

Finally, iterations may be brought in after all, once the conditional 
relation is provided with an additional parameter: ifE, wAB. I.e., if AB 
holds as seen from the vantage point of some particular world w in E. 
Through lambda abstraction, conditional statements can then be made 
to correspond to sets of worlds, which may again be used as arguments 
A, B. (Compare the treatment in Chapter 3 of determiners in direct 
object position.) Much of what follows can be transferred to this 
parametrized setting without major changes. 

4.2. INTUITIONS OF CONDITIONALITY 

What kind of a generalized quantifier is a conditional? Before passing 
on to the usual display of paradigmatic (non-)inferences, let us reflect. 
Our intuitions come in various kinds, and it is important to consider the 
more volatile ones first, concerning the kind of notion that we are after, 
before these are drowned in a list of very specific desiderata. Only in 
the light of such background intuitions, one can take a proper look at 
more concrete claims of validity or invalidity of conditional inferences. 

The difference may also be illustrated by an example from a different 
field of semantics. In the logical study of Time, attention is often 
restricted to the choice of specific axioms for the temporal precedence 
order, matching certain desired validities in the tense logic. But, there 
as well, there exist preliminary global intuitions, such as 'isotropy' or 
'homogeneity', constituting the texture of our idea of Time, constraining 
rather than generating specific relational conditions. 

Indeed, the ill repute of the term 'intuition' may be due to a mis
application. It is highly unlikely that intuition would settle such specific 
issues as the validity of concrete inference schemata. An appeal to 
intuitions at the latter level often amounts to a refusal to argue about 
the evidence. On the other hand, the proper place for intuition would 
seem to be at the level of the general structure of our concepts - in the 
spirit of Kant's philosophy. To paraphrase this great philosopher, we 
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have certain a priori intuitions concerning the basic logical notions, and 
no human mind is entirely without them. 

Global intuitions themselves come in various kinds, having different 
levels of generality. The first example to be presented here is very 
specific for conditionals, the next holds for determiners in general, and 
finally some constraints are reviewed on logical constants as such. 

Confirmation. A conditional statement if XY claims that 'significantly 
many' ('enough') X-occasions are Y-occasions. As such, it is tied up 
with what might be called 'positive' or 'negative' evidence; i.e., cases 
where both X and Y hold, or cases where X holds without Y, respect
ively (see Figure 16) . 

.----------------------.E 

A B 

Fig. 16. 

Briefly, our intuition is that addition of positive evidence, or removal 
of negative evidence will not affect a true conditional. 

Out of the various ways of making this idea more concrete, here is 
one suggestive formulation. Suppose that one decides that if XY is true 
in E on the basis of partial information about the extensions [X], [Y], 
say [X] = A, [Y] = B. Now, further information may tell us that these 
estimates should be revised to A' 2 A, B' 2 B. Then the above intui
tion says that, if no counter-examples are added in this way, the condi
tional relation will continue to hold. Formally, for A ~ A', B ~ B', 

if ifEAB and A' - A ~ B', then ifEA' B'. 

In practice, it is more convenient to split this up into 

(1) fixed A, growth of B: 
if AB implies if A(B U C), for any set C; 

(2) simultaneous growth of A, B: 
if AB implies if(A U C)(B u C), for any set C. 
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The first of these principles is known as 'weakening of the consequent' 
(in our terms, 'upward right monotonicity'). 

Next, suppose that there are errors in judgments already made about 
[X], I Y], and one retreats to A' S; A, B' S; B. At least, the above intui
tion tells us that mere removal of counter-examples will not affect the 
conditional assertion: 

if ifEAB and A - A' S; A - B, then ifEA' B. 

More elegantly, this becomes the implication 

(3) if A(B n C) implies if(A n B)C. 

What about a stronger principle, dual to the above (1), stating that 
'strengthening the antecedent' will do no harm? 

(3') if AC implies if(A n B)C. 

This would mean that possible removal of confirming instances does 
not affect the conditional either. Except for the extreme case where A 
is included in C to begin with, such a principle has little to recommend 
itself. 

A fourth and final aspect of Confirmation would seem to be that 
'optimal' evidence should verify a conditional: 

(4) if AB whenever A S; B. 

This completes the exploration of the most distinctive feature of con
ditionality. 

The next intuition is more general. A conditional statement invites us 
to take a mental trip to the land of the antecedent. Thus, the assertion 
of the consequent is only relevant in as far as it holds among the an
tecedent occasions: 

ifEAB iff ifEA(B n A). 

And so, we again endorse the principle of Conservativity from earlier 
chapters. Most current accounts of conditionals obey this restriction. 

Next, being a logical constant, the conditional obeys some of the 
general features of logicality formulated in Chapters 1, 2. Conditionals 
should be 'context-neutral': the relation between antecedent and conse
quent sets involves no more than these sets themselves. Therefore, we 
assume Extension (cf. Section 1.3.). Accordingly, we shall drop the sub
script 'E' henceforth. Moreover, there is also a case to be made for 
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Variety; for essentially the same reasons as in Sections 1.3., 2.1. To
gether with clause (1) of Confirmation, the latter is equivalent to requir
ing 'reflexivity': if AA, as well as 'consistency': if A0 for no A except 
the empty set. (The latter condition need not be satisfied on, say, a pro
babilistic approach, where A might be a non-empty set of measure 
zero. Still, see Veltman, 1985, for a purely 'conditional' defense of Var
iety.) 

Also, the less immediate logical intuitions of Section 2.4. are relevant 
here. Notably, there should be Uniformity in the range of a conditional 
relation. Accidental features, such as the size of the antecedent set, 
should not matter in its truth value behaviour. Typically, then, we are 
invited to make comparisons across different antecedent sets. Thus, re
call the earlier 'thought-experiment', involving addition of one element 
to A - B and A (') B separately, and then combining the two actions. 
The outcomes are 'confirmation patterns' of truth values, of the form 

old situation 
add counter-example add confirming instance 

add both 

A priori, sixteen possible outcomes can occur for our thought-experi
ment. Of these, Confirmation allows only those displayed in Figure 17. 

+ + + 
+ + + + + + 

+ + + 

Fig. 17. 

Now, Uniformity will typically constrain the occurrences of such 
outcomes. The experiment must exhibit certain regularities, indepen
dent from the particular location A, B where it is performed. One 
obvious requirement, then, is uniqueness of outcomes: the combined 
addition should always have its truth value determined by the results of 
the separate experiments. Thus, the second and third (or fourth and 
fifth) patterns in Figure 17 cannot occur together for the same con
ditional. There is room for a whole hierarchy of additional uniformity 
conditions here; but the present minimal kind of regularity suffices. 

Finally, one very conspicuous logical constraint from the preceding 
will be imposed: for the moment, conditionals are to satisfy Quantity 
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(cf. Section 1.6.). This principle of stark austerity may need some 
clarification here. Quantity may be viewed as a form of Occam's Razor: 
there should be no more to conditionals than meets the eye. That is, no 
semantic constructs should be relevant but those sanctioned explicitly 
by the syntactic material in a conditional sentence. Now, the proper 
denotations of the antecedent and consequent sentences are bare sets of 
occasions - and the particle if has to denote a relation between these. 
Violations of Quantity must then always result in 'hidden variable' 
theories, postulating additional semantic structure among occasions 
beyond what meets the eye. The latter procedure is quite respectable, of 
course, in the progress of science. But here, we want to explore the 
limits of the former, more austere realm of conditionals - if only to see 
just where this is to be transcended, and what the options are. 

4.3. A TRILEMMA 

Even if all our general intuitions about conditionals are plausible by 
themselves, their combined effect may be surprising. After all, the 
problem with intuitions is usually not their availability or vitality, but 
rather their consistency. Thus, we want to determine which generalized 
quantifiers are left by the combined postulates of the preceding section. 

In a first analysis, there are good reasons for restricting attention 
here to finite universes. It is in accord with the intuitive semantics of 
natural language (as explained in Section 1.2.) - and it is also the area 
where proposed explications for conditionals work most smoothly (cf. 
Lewis, 1981). 

Then, we may use the Tree of Numbers (Section 2.2.) to find the 
conditionals left by our postulates: essentially, two 'democratic' cases 
and one 'anarchistic' one: 

THEOREM. The only conditionals 10 the present sense are those 
defined by all, not least and some. 

Here, 'not least' is short for 'half or more', and 'some' stands for 
'some or all'. 

Proof That these three satisfy all earlier postulates follows by 
geometric inspection of their tree ·patterns. The key observation here 
is that Confirmation (1), (2), (3) amount to the requirement that, 
whenever (a, b) belongs to the conditional, then so does the area 
(0, 00), (0, b), (a, b), (a, 00) - as depicted in Figure 18. 
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Fig.18. 

Moreover, Variety (including Confirmation (4» says that the right 
edge of the tree lies within the +region, while the left edge (minus the 
top) lies outside ofit. 

Conversely, consider the pattern for any conditional satisfying our 
postulates. The top node has +, by Variety. The next row gets -+, for 
the same reason. The third row leaves a choice in the middle, its 
boundaries being fixed by Variety again. One possibility is --+, in 
which case Uniformity produces a -diagonal along the right edge. By 
Confirmation then, the tree becomes that of all (see Figure 19(i». 

(i) 
+ 

- + 
- + 

· • • 

- + 

(ii) 
+ 

- + 
- + + 

+ + + 
- + + + + 

• • • 

Fig.19. 

(iii) 
+ 

+ 
- + + 

+ + 
+ + + 

• • • 

+ + + 

The other possibility for the third row is -++. This fixes three 
positions in the fourth row, as before, leaving the second position open. 
Case 1: -+++. Then, the experiment _ -+ has produced the outcome 
+, and will continue to do so (Uniformity). By the other postulates 
then, the tree becomes that of some or all (Figure 19(ii». Case 2: 
--++. Then, four positions in the fifth row are fixed. The remaining 
one (in the middle) is determined by Uniformity: _ \ will invariably 
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produce the combined truth value outcome +. By a similar observation 
concerning the experiment _ -+, the tree pattern will be that of half or 
more (Figure 19(iii». D 

So, the minimal analysis of Section 4.2. still leaves three main types 
of conditionality: at least one confirming instance, at least enough 
confirming instances· to outweigh the counter-examples, and confirming 
instances only. If the first of these is to be excluded, then further 
intuitions of conditionality are to be produced excluding it. For 
instance, one might require 'consistency': 

for no A, B: both if AB and if A (E - B). 

This particular condition would also rule out the second conditional; 
but a more discriminating approach is certainly possible. 

The above scarcity of admissible denotations depends heavily on the 
Uniformity condition. Without it, (uncountably) many other conditional 
patterns pass the test; of which the following still show a good deal of 
'regularity' in their truth value tree: 

all A except at most n are B, 
at least kln-ths of the A are B. 

Even so, there remain forms of conditional reasoning which are not 
captured by any of these modellings. Notably, in the study of counter
factual conditionals, a basic subjunctive logic S has arisen (cf. Burgess, 
1981) with the following peculiarities. On the one hand, it differs from 
the 'classical' inclusion conditional, in that, e.g., strengthening of antece
dents is not allowed. On the other hand, it supports the principle of 
Conjunction: 

CON] if AB, if AC imply if A(B n C). 

(Note that this is our first example of a two-premise principle.) Now, it 
will be shown in Section 4.10. that, on finite universes, CON] forces a 
conditional to become inclusion after all: whence S cannot be modelled 
in the present setting. 

The logical escape routes from here will be charted presently. 
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4.4. THREE WAYS OUT 

The purely numerical approach to conditionals has reached its limits in 
the above trilemma. There are three main options for transcending this 
approach, encompassing, between them, most examples of conditionals 
studied in the literature. 

One immediate option which violates none of the earlier intuitions is 
to lift the restriction to finite sets. Essentially, we have been studying 
conditionals as binary relations between finite sets of natural numbers 
- and we might now pass on to the full power set of IN, or even larger 
infinite sets. One attraction of this in finitary approach is the following. 
In doing semantics on finite models, one is typically concerned with an 
arbitrary, but presumably 'large' number of occasions. This spirit is 
sometimes better captured by infinite sets, abstracting from all peculiar
ities of particular finite sizes. And indeed, Section 4.5. presents some 
new attractive infinitary conditionals. 

The predominant tendency in the area seems to be, not to exploit 
additional resources of infinity, but to enrich the old (finite) models by 
imposing additional semantic structure. The intuition to go then is, not 
a typical conditional principle such as Confirmation, but the general 
logical one of Quantity itself. (Quantitative violations of, say, Extension 
or Uniformity will not be pursued here.) 

In principle, there are many ways of proceeding here. One is to 
assign 'weights' to different occasions, by introducing some probability 
measure P on subsets of E. Conditionals then arise such as the 
following notion of 'relative likelihood': 

ifAB if P(A n B) > P(A -B). 

Note that this inductive approach reduces to the earlier numerical one 
when P is the equiprobability measure. The inductive approach is the 
topic of Section 4.6.; where a connection is found with earlier work in 
the foundations of probability. 

Nevertheless, the main thrust in possible worlds semantics for con
ditionals has been rather to differentiate between individual occasions 
through patterns of 'accessibility' and 'similarity'. For instance, Quantity 
is violated in the counterfactual semantics of Lewis (1973), witness 
Figure 20. (Comparative similarity is just relative distance here; and 
truths are as indicated.) 
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7['[8] 

B 

Fig. 20. 

Let the function :n permute the worlds 1 and 2, leaving 3 in its place. 
In the left-hand picture, if AB holds in world 3 on the Lewis account 
(all 'closest' A-worlds are B-worlds). But in the right-hand picture, 
if:n[A]:n[B] fails in 3; even though the two situations depicted are 
numerically indistinguishable. So, the underlying pattern of the worlds 
is crucial (cf. Section 1.7. for the similar case of non-quantitative 
determiners). This hierarchical or intensional approach will be studied 
in Section 4.7. 

Further connections between these three ways out of austerity will 
not be pursued here, nor any alternatives to them. 

4.5. CONDITIONALS AT INFINITY 

With conditionals viewed as relations between arbitrary sets, finite or 
infinite, the earlier tree of numbers receives an infinitary superstructure, 
as in Figure 21. 

0,0 
1,0 0,1 

2,0 1, 1 0, 2 

~()' 0 ~(), 1 ~()' ~() 1, ~() 0, ~() 
~I' 0 ~I' 1 ~I' ~() ~I' ~I ~()' ~I 1, ~I 0, ~I 

Fig. 21. 

We shall be careful not to become entangled in infinite cardinal 
arithmetic in these higher regions. 
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One new kind of conditional connection which can be expressed 
now is admitting a 'negligible' number of exceptions: 

iF AB 'f {A ~ B , when A is finite 
J 1 A - B is finite, when A is infinite . 

We shall return to this example presently. 
Of the earlier intuitions, Conservativity, Confirmation and Variety 

remain equally plausible. Uniformity becomes less attractive, however, 
as one does not expect infinite sets to behave like finite ones in all 
respects (cf. the above example). Still, one might develop a viewpoint of 
admissible extrapolations from (possibly uniform) conditionals in the 
finite realm to those on arbitrary sets. 

Regardless of the precise reasoning employed, the only really in
teresting conditionals in the infinite realm are those showing already on 
the first infinite row of the number tree (Figure 22): 

... ~ + 

--+ all 

+++ 
+++ 

Fig. 22. 

most 

not least 

Two of these are straightforward extrapolations of the main examples 
in Section 4.3., the one in the middle is the above case. 

Do these infinite extrapolations differ significantly from their finite 
counterparts, notably in the inferences they support? All (inclusion) has 
precisely the same logic as on the finite universes; as is easy to see. (In 
any case, our only worry would be that one !night lose inferences, 
having added so many models.) Our conjecture is that the same holds 
for not least. 

The logic of the above example is more intriguing, however. It 
validates Conjunction (from if XY and if XZ to if X(Y A Z», which 
sets it apart from the not least logic. Also, it fails to validate transitivity, 
which distinguishes it from the logic of all. (To see this, consider some 
infinite A with finite A' ~ A outside of B: if AB, if A' A, yet not 
if A' B.) Its exact behaviour is rather mysterious (cf. van Benthem, 
1984b). 

Still, as Frank Veltman has pointed out, there is another plausible 
way of extrapolating from the middle row of Figure 22: 
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if AB 'f J A ~ B , when A is finite 
J 1 llA n BI > IA - BI, when A is infinite. 

As it turns out, the latter conditional yields the basic subjunctive logic 
S. (Cf. Veltman, 1985. The idea is this. All S-principles (d. Section 
4.9.) are valid. Conversely, one takes a finite S-counter-example for a 
conditional inference (cf. Burgess, 1981), converts this into a connected 
Lewis counter-model (see Section 4.9.), and then adds infinitely many 
copies of worlds in the concentric spheres, starting from the outside, 
with stepwise increasing infinite cardinalities. This has the effect of 
simulating the clause 'in all closest A-worlds' by 'for most A-worlds'.) 

So, there is a purely numerical modelling of the basic subjunctive 
logic after all. 

4.6. INDUCTION 

Universes of occasions may be weighed by a probability measure P 
assigning real numbers P(A) to sets A ~ E, subject to the following 
conditions: 

o ~ P(A) ~ 1; P(0) = 0, P(E) = 1 
for disjoint A, B, P( A u B) = P( A) + P( B) 

In this section, only finite universes will be considered. 

(normality) 
(additivity). 

Several 'inductive' conditionals may be defined employing such a 
measure. One says that B n A fails to cover A by a zero-set: 

if AB if P(A n B) = P(A). 

The logic of this conditional is just the classical one of entailment. And 
in fact, when P is the equiprobability measure on E, this conditional 
reduces to all. Analogously, a generalization of not least arises, as a 
merest tip of the balance: 

ifAB if P(A n B) ~ P(A -B). 

This stipulation is related to an idea in Lenzen (1980), who reads 
A -conditional belief of B as 'B is more likely than not, in the realm of 
A-worlds'. 

In the spirit of this book, at issue are not so much special examples 
as general constraints on admissible probability measures, and con
ditionals based upon them - within and across various universes. Such 
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a probabilistic picture suggests intUItlOns of its own, that would not 
come to the fore in the purely numerical setting of Section 4.2. For 
instance, conditionals if£, p, now viewed as functions from .9'(E) X 
.9'(E) to to, 1), may be required to satisfy various 'smoothness' 
properties involving P. E.g., they might be in 'equilibrium', in the sense 
that P-small shifts in argument sets ought to leave truth values un
perturbed. Actually, this is better stated in a more general perspective 
of 'fuzzy conditionals', assuming truth values in the real interval [0, 11: 
where if may become continuous in the usual sense of analysis. 

To conclude this short foray, here is a parallel between the gen
eralized quantifier approach and an earlier historical one. 

In his foundational studies of probability, Bruno de Finetti intro
duced a notion of 'relative probability' between sets of outcomes: 
A ::::;; B, meaning that 'A is at most as plausible as B'. (Cf. Lenzen, 
1980, Chapter 4, for further details on the following topic.) He then 
produced a list of intuitive desiderata, including 

(1) 0::::;; A ::::;; E, (2) 0 ~ E, (3) if A::::;; B ::::;; C, then A::::;; C, 
(4) A ::::;; B or B ::::;; A, (5) if A II B ::::;; A II C, then A - C ::::;; A-B. 

The guiding hope was that these would provide necessary and sufficient 
conditions for this primitive relation to be represented through some 
probability measure P on E: A ::::;; B if and only if peA) ::::;; PCB). Later 
investigations have revealed that further, less intuitive combinatorial 
postulates are needed for this purpose. 

There is an intimate connection between de Finetti's notion and the 
above inductive not least conditional if. Some calculation will show that 

if AB iff 
A::::;; B iff 

A -B::::;; A II B, 
if(A~ B)B. 

Here, '~' denotes symmetric difference. Thus, the De Finetti axioms 
generate a conditional logic. Amongst others, (5) becomes universally 
valid, (4) is Conditional Excluded Middle, while (3) becomes the 
'~-principle' (cf. van Benthem, 1984b): 

if(A ~ B)B, if(B ~ C)C imply if(A ~ C)C. 

The latter holds for not least - and indeed, we have a conjecture: 
does the De Finetti logic coincide with the latter one? 



CONDITIONALS 87 

4.7. INTENSION 

The usual approach in conditional semantics has been a hierarchical 
one. Possible worlds can be more or less close to some vantage world, 
and the conditional is only concerned with 'closest' antecedent worlds. 
In our perspective, where the universe itself may already be derived 
from some vantage point, a hierarchy is just some binary relation. Thus, 
the generalized quantifier if will now assign binary set relations to 
(finite) structured universes (E, R), say. The earlier numerical per
spective was a democratic one, with an empty (or universal) relation R 
- but now, certain occasions may wield greater influence than others. 

One typical hierarchical conditional considers top-ranking occasions 
only: 

all R-maximal occasions inA are in B. 

We shall review the earlier intuitions (Section 4.2.) for this example. 
First, of course, Quantity has been abandoned - but there remains a 
principle of Quality (cf. Section 1.7.): 

conditional relations are invariant under the action of 
R-isomorphisms between universes (E, R). 

For, such isomorphisms preserve the relevant hierarchical structure. 
Within a single universe, the force of this postulate depends on the 
R-pattern. If R is empty (or universal), every permutation is an 
R-automorphism, and Quality becomes Quantity. Thus, the present 
approach subsumes the earlier numerical one. If, on the other hand, 
every individual is uniquely distinguished by its position in the hier
archy, then identity is the only R-automorphism, and the postulate 
becomes empty. 

Continuing with the other constraints, Conservativity remains equally 
plausible. The case of Confirmation is slightly more interesting. Evi
dently, this principle should remain valid - but, this may impose some 
(mild) conditions on the hierarchy. For instance, the top-ranking con
ditional satisfies clauses (1), (2) and (4) without further ado - but for 
clause (3), transitivity and irreflexivity are needed for R. 

Proof Ad (2): Suppose that if AB. Consider any top-ranking w in 
A u C. Either w E C, and so wEB u C; or w E A - whence it is 
R-maximal in A, and therefore, by the assumption, wEB, wEB u C. 

Ad (3): Suppose again that if AB. Now remove a counter-example 
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from A-B. Let W be R-maximal in the resulting set A -. We are done 
if it also was R-maximal in A. Suppose otherwise. Then some WI E A 
lies R-above w. But then, by the above assumptions on R (and the 
finiteness of our universe), there must be some R-maximal v in A 
which is R-above w. This v belonged to B, and so it has not been 
removed. Being in A -, then, it refutes the R-maximality of w in the 
latter set: a contradiction. 0 

This example shows three 'degrees of freedom' for a particular con
ditional: general constraints, a choice of truth definition, and special 
conditions on auxiliary semantic structure. This theme will be studied in 
greater depth in Chapter 9. 

Variety plays the same role as before. In our paradigm example, its 
validity depends on the existence of R-maximal worlds in non-empty 
sets: something which again depends on the above assumptions. 

On infinite universes, the top-ranking conditional need not satisfy 
either Variety or Confirmation. This reflects a well-known problem 
with Lewis' possible worlds semantics. On finite models, his truth 
condition has the intent of our top-ranking - but the infinite case leads 
to the less intuitive clause that 'some A (l B-world is R-closer than 
every (A - B)-world'. Still, there is a close connection between the 
above example and the Lewis tradition. 

THEOREM. The top-ranking conditional validates precisely the basic 
subjunctive logic S. 

Proof The main idea is that all axioms from Burgess (1981) 
(presented in Section 4.9. below) are valid for our conditional - while 
conversely, Burgess-counter-examples, which can always be taken to be 
finite, are hierarchies in the above sense. 0 

After this digression, we consider the remaining intuitions of Section 
4.2. Extension remains appropriate, be it with respect to 'extensions' of 
universes <E, R) in the ordinary model-theoretic sense. And finally, 
Uniformity acquires a new flavour in the present perspective. The 
characteristic thought-experiment now consists in adding new worlds to 
a hierarchy. This will influence our description of the possible out
comes, in terms of preserving or destroying certain R-patterns. One 
particular implementation will be presented here, for the purpose of 
illustration. 
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By Confirmation, confirming instances can always be added, at each 
position in the hierarchy. For counter-examples, let us distinguish three 
possible actions: (1) insert in top position (withoUl A n B-superiors), 
(2) insert below some A n B-world (not necessarily immediately 
below), (3) insert below some (A - B)-world (likewise). Uniformity 
now says that allowing such an action once means allowing it always. 
The force of this principle will appear below. 

The richer hierarchical perspective also suggests new intuitions of its 
own. For instance, as seen from each individual occasion, the hierarchy 
is only relevant in as far as it is 'accessible'. Formally, call a sub
structure of (E, R) a subhierarchy if each of its occasions retains all its 
R-superiors and R-inferiors from E. Then the principle of Relevance 
states that conditional assertions are preserved in passing from a 
hierarchy to its subhierarchies. That is, 

if (E', R') is a subhierarchy of (E, R), then 
i.f(E, R) AB implies i.f(£" R') (A n E')(B n E'). 

As in Section 4.3., the effects of our combined intuitions may be 
investigated, for finite transitive irreflexive hierarchies. 

THEOREM. The only two conditionals satisfying Quality, Conser
vativity, Confirmation, Variety, Extension as well as Uniformity and 
Relevance are 

all X are Y, all top-ranking X are Y. 

Proof By a simple calculation, these two conditionals satisfy all 
principles mentioned. 

Conversely, consider any conditional if subject to these constraints. 
Claim 1: Relevance rules out action (1) occurring in the statement of 

Uniformity. For, by Confirmation, one single A n B-occasion verifies 
if AB. Action (1) would allow the addition of a single R-isolated 
(A - B) occasion, while if AB remains true. But then, by Relevance, 
the latter alone would verify the conditional: which contradicts Variety. 

Claim 2: Either if is inclusion, or it allows both action (2) and (3) 
occurring in the statement of Unifon,n.ity. 

For, if there exists any situation i.f(£, R) AB with A not included in 
B, then that hierarchy contains some (A - B)-occasion. Now, this 
occasion WI cannot occur in top position. For, otherwise, removing it 
leaves the conditional true (by Confirmation); and hence, in retrospect, 
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action (1) was allowed after all. So, by an earlier argument, there must 
be some other R-maximal occasion w2 above WI - and evidently, the 
latter must be in A II B. But then, the same reasoning of removal! 
reversal (applied to WI> W2) shows that action (2) is admissible. Thus, 
(A - B)-occasions may be inserted below w2, in particular also below 
WI. And that again means that action (3) is admissible too. 

Claim 3: When actions (2), (3) of Uniformity are admitted, the 
conditional is that of top-ranking. 

Here, in one direction, each situation where all top-ranking A are B 
can be created from single A II B-occasions (where the conditional 
holds, by Variety), through judicious insertion of confirming instances 
intermingled with (2), (3)-insertions. Conversely, suppose that at least 
one situation is admitted with some top-ranking (A - B)-occasion. 
Omit this occasion (by Confirmation): in reverse, action (1) has been 
allowed, in contradiction to the first claim. 0 

Thus, on the above analysis of broad intuitions, the hierarchical 
perspective allows just ordinary modal entailment as in the purely 
numerical case, while adding one new possibility (top-ranking), which 
generates the basic subjunctive logic in the Lewis-Stalnaker tradition. 

4.8. THE RANGE OF CONDITIONAL TRUTH DEFINITIONS 

Even though conditionals were treated as abstract generalized quan
tifiers in the above, the presentation of specific examples, or the 
statement of classification theorems usually proceeds by definition in 
some standard logical language. Indeed, such descriptions may be 
viewed as possible truth definitions for abstract conditionals, satisfying 
certain intuitive constraints, with respect to some background class of 
universes of occasions. 

In the logically simplest case, call a conditional iffirst-order definable 
if there exists some formula cp = cp(x, Y) in the monadic first-order 
language with identity and unary X, Y such that for all E and A, 
B~E, 

ifEAB iff (E, A, B) 'F= cpo 

For instance, two of the conditionals in Section 4.3. were first-order 
definable: 'tx(Xx ..... Yx) (all), 3x(Xx A Yx) V 'tx(Xx ..... Yx) (some or 
all). Because of the preservation of first-order statements under iso
morphism, all such conditionals satisfy Quantity. 
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Definitely outside of this class is the third conditional in the earlier 
Trilemma. not least is not even first-order definable on the finite sets 
alone. This follows from the characterization of first-order definability 
in the tree of numbers, presented in Section 2.5. 

The limitations of a first-order language also become apparent in the 
following illustration, drawn from the Introduction to Suppe (1974). 

Intermezzo: The Logic of Dispositions 

The only well-known alternative to material implication known in the 
thirties was modal entailment: all X are Y (X is a 'sufficient condition' 
for Y). Now, when philosophers of science started considering con
ditional assertions in scientific contexts, they ran into the problem that 
entailment does not work for dispositional statements. E.g., the sen
tence This lump of sugar is soluble, which presumably means If this 
lump of sugar is put into water, it dissolves, cannot be transcribed as 
'all watering occasions for this lump are dissolution occasions'. One 
problem is that continuously dry objects would have to be called 
soluble then, for trivial reasons. This could be remedied by enlarging 
the setting to all possible occasions - whether actual in this world or 
not. But even so, the conditional remains too strong in another sense. 
One is only referring to all watering occasions 'under normal cir
cumstances'. Typically, this means that dispositional conditionals will 
not admit of strengthening their antecedents, as this may bring in 
non-normal circumstances. (If this lump of sugar is put into water and 
withdrawn at once, then . .. ?) 

These problems led Carnap to formulate an amendment to the 
'Received View' of scientific theories. In addition to ordinary first-order 
predicate logic, one would have to allow intensional (notably, counter
factual) logic, even in the observational base of the theory (d. Carnap, 
1956). 

There is a curious weakness to the argument for such a move. One 
considers a certain kind of natural language statement, one tries a 
simple-minded predicate-logical transcription: this then turns out to fail 
- and one concludes that no predicate-logical transcription whatsoever 
will be adequate. This pattern of reasoning is also quite current in 
defense of the thesis that 'predicate logic is insufficient for semantics'. 

To settle the problem in a more definite manner, it should be clear 
which logic of dispositionals is to be explicated. One obvious candidate 
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here is the earlier basic subjunctive logic. Modulo some reasonable 
background assumptions, there is now an answer. 

THEOREM. No first-order definable conditional cp(=, X, Y) generates 
precisely the basic subjunctive logic. 

Proof See van Benthem (1984b). 0 

This result also provides a justification for the break with monadic 
first-order definability in current counterfactual semantics. 

But perhaps, dispositional statements have a logic different from the 
above subjunctive one? Still, whatever its precise form, that logic will 
lack Persistence, whether downward or upward. But then, the defin
ability theorem of Section 2.5. already implies a refutation. For, it may 
be shown that any first-order definable conditional satisfying both 
Conservativity and Confirmation will eventually settle down to either a 
~MON or a tMON type. 

One curious feeling remains. As with other instances of definability 
questions, laborious formal analysis has eventually confirmed the earlier 
heuristics: 'it cannot be done simply. So, it cannot be done at all'. Could 
it be that a profound Principle of Perfection governs our world: 

The truth is always simple? 

End o/intermezzo 

From the austere monadic first-order language, one may ascend in at 
least two directions. One is to increase logical power, passing on to 
higher-order notions; the other is to increase power of perception, 
enriching the vocabulary. There is an argument for a preference here. A 
truth definition ought to be as simple as possible, not presupposing any 
higher-order entities in the models. If the latter are thought important, 
they should be incorporated into these models explicitly, together with 
the crucial axioms governing them. (Cf. also Chapter 9 on this issue.) 
E.g., the probabilistic approach of Section 4.6. shifted the higher-order 
complexity of not least to explicit probability measures P, using which 
the truth definition could become first-order again. 

For first-order definable conditionals, it may be ascertained which 
syntactic constraints (in the presence of arbitrary 'hidden variables') 
are induced by the intuitive postulates of earlier sections. Essentially, 
the latter amount to ordinary model-theoretic 'preservation properties'. 
For instance, Conservativity corresponds to syntactic restriction of all 
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quantifiers to the antecedent predicate X, as has been noted in Section 
2.5. Confirmation requires at least Monotonicity, which induces syn
tactically positive occurrences for the consequent predicate Y. The 
further parts of Confirmation impose additional restrictions - which 
are as yet undetermined. 

On the basis of these constraints, special purpose conditions may 
decrease the range of possible truth definitions even further. For 
instance, 'strengthening the antecedent' essentially removes occurrences 
of the existential quantifier, leaving syntactically 'universal' schemata 
only. 

4.9. CONDITIONAL LOGICS 

Besides global intuitions, there exist also convictions concerning the 
validity, or desirability of particular inference patterns for conditionals. 
Now, proposals for 'conditional logics' have varied widely. Moreover, 
their motivation is sometimes unclear - especially in those cases where 
merely some suspect 'classical' laws are removed from the usual corpus. 
Therefore, let us take stock of the privileged conditional logics that 
have emerged naturally in this chapter. Our medium will be the simple 
language of Section 4.1., with atomic if XY, for Boolean terms X, Y. 

First and foremost, Section 4.2. inspires a minimal conditional logic 
M, with principles 

(1) 

(2) 

ifXY 

if X(Y /\ X) 

if X(Y /\ X) 

ifXY 

(3) if XY 

if X(Y v Z) 

(4) if XY 

if(X v Z)(Y V Z) 

(5) if X(Y /\ Z) 
if(X /\ Y)Z 

(6) if XX 

Actually, axiom (3) is redundant here. 

(Conservativity) 

(Confirmation) 
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The next important logics arise from the trilemma of Section 4.3. 
First, there was (S5-)modal entailment, axiomatizable as the classical 
conditional logic C, consisting of M with the following additions: 

(7) ifXY if YZ 

if XZ (Transitivity) 

(8) ifXY 

if(X II Z)Y (Left -mono tonicity ) 

(9) if XY ifXZ 

if X(Y II Z) (Conjunction) 

(10) ifXY ifZY 

if(X v Z)Y (Disjunction) 

There is a good deal of redundancy here, for clarity of presentation. 
Then, the not least conditional generates the preferential conditional 

logic P. The latter lacks classical laws such as transitivity or downward 
persistence. Our conjecture is that P can be recursively axiomatized. 
But in practice, its principles are difficult to locate (cf. also Section 
4.6.). 

What we do know is this. 

THEOREM. M ~ P ~ C - and all inclusions are proper. 
Proof Here are the only two non-immediate assertions. 
M ¥- P: the ~-principle of Section 4.6. was valid for P; but it fails 

for the conditional all but at most one which does satisfy the minimal 
conditional logic. 

P ~ C: Let the inference from if Xl Yl , ... , if Xn Yn be refuted by 
inclusion in some model. Already, not least Xi are Y; (1 :::;; i :::;; n), 
because all are. On the other hand, at least one object inhabits X - Y. 
Now, add a number of copies of this object, behaving exactly the same 
as to (non-)membership of the relevant sets, such that the cardinality of 
X - Y starts exceeding that of X!l Y. This procedure disturbs none of 
the previous relations if Xi Y; - and thus, we have a not least-counter
example. 0 

Finally, some or all validates an exemplary conditional logic E, with 
axioms of reflexivity and symmetry. Evidently, this is not a serious 
competitor. 
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Of greater interest are some intermediate logics. For instance, the 
classical logic adds two kinds of principle to the minimal one. There is 
'transmission' (transitivity, left-monotonicity), but also 'combination', as 
in Conjunction and Disjunction. The latter phenomenon is of interest 
by itself, and we may define the subjunctive conditional logic S as the 
result of adding the latter two principles to M. The motivation for the 
name lies in the following result. 

THEOREM. S is precisely the basic subjunctive logic. 
Proof The principles of Burgess' presentation are Reflexivity, Con

junction, Right-Monotonicity, Disjunction as well as the inference from 
if XY, if xz to if(X 1\ y)z. All derivations involved in this equivalence 
are straightforward, both ways. 0 

As a byproduct, the final Burgess axiom, often thought rather ad-hoc, 
receives a natural motivation through clause (3) of Confirmation. 

It remains to establish the place of S in the above scheme. Obviously 
M ~ S ~ C, where all inclusions are proper. But, there is a deeper 
connection between M and S. 

THEOREM. M coincides with the one-premise fragment of S. 
Proof Consider any invalid inference from if XY to if ZU in M. We 

shall find a Lewis-model which is an S-counterexample. First, some 
transformations are useful, into M-equivalent assertions: 

if XY to if X(Y 1\ X) to if (Xl V X 2)X2, where Xl' X 2 are disjoint 
disjunctions of complete state descriptions (composed out of the 
proposition letters occurring in X, Y, z, U), such that X +--+ Xl V X 2, 
Y 1\ X +--+ X 2 ; 

ifZU likewise to if(ZI v Z2)Z2. 

Now, as if ZU is non-derivable, Zj cannot be empty. By itself, one 
single world verifying some state description from Zl would already 
falsify the conclusion - being a closest Zl V Z2-world to itself which 
is not Z2. But, the premise imposes the condition that closest Xl V X 2-
worlds must be X2-worlds. I.e., for every Xl-world, there must be 
some closer X 2-world. The latter condition is only operative when 
Zj ~ Xl. And even then, the obvious dodge is to pick a Zcworld, with 
respect to some vantage world in X 2 - Z2. This again will fail to falsify 
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the conclusion only if X z ~ Zz. But then, with these two inclusions, in 
M we have, successively, 

if(X1 V Xz)Xz, if(Z1 V Xz)Xz (by axiom (5», 
if(Z1 V (X2 V (Zz/\ ,XZ»)(X2 V (Zz/\ ,Xz») (by axiom (4». 
Applying some Boolean identities then, the conclusion 

if(Z1 V Zz)Zz emerges after all: a contradiction. 0 

The counterexamples obtained in the above are even 'connected' in the 
sense of Lewis (1973): whence M is also the one-premise fragment of 
the full original Lewis logic. This observation raises a similar question 
for S itself. 

THEOREM. S is the many-premise fragment, in our restricted formal
ism, of the full Lewis logic. 

Proof In one direction, every S-principle is Lewis-valid. Conversely, 
let the inference from if A 1B 1, ... , if AkBk to if AB be refuted on some 
finite model with irreflexive transitive R, in some world w. I.e., there is 
an R-closest A-world where B fails, say x. Now, consider the 'gen
erated submodel' consisting of w, x and all worlds on R-paths in 
between these two. If AB still fails at w, while all if A; B; are still true 
(1 ::::;; i ::::;; k). (Note that x is the only A-world in this new model.) 
Next, this model in rearranged in concentric spheres, according to the 
distance function given by 

distance(w, y) =def the maximum length of an R-path going 
from wto y. 

This procedure may distort truth values; but, we still have 
(i) if AB is false at w (recall that there was only one A-world), 
(ii) all if CD formerly true at w remain true (for, R-closest C-worlds 

under the new arrangement must have been R-maximal in C before). 
A somewhat different proof may be extracted from Lewis (1981). 0 

Finally, as for the connection between the subjunctive and the pre
ferentiallogic, the answer is as follows: 

THEOREM. P is properly contained in S. 
Proof Conjunction is an S-principle which is P-invalid. But, any 

inference which is S-invalid is outside of P too. For, let the inference be 
refuted in some finite S-model, and hence also, in some finite Lewis-
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model (cf. the preceding argument). A suitable finite version of the 
infinite 'blow-up' argument in Section 4.5. will produce a not least 
counter-example. (This time, one multiplies copies of worlds, proceed
ing from outer to inner circles, according to the following instruction: in 
circle i + 1, take as many copies for each world as the sum total of all 
copies created in circles 1, ... , i.) 

Thus, the major conditional logics from a linear sequence: 
M~P~S~C. 

4.10. GENERAL PATTERNS OF CONDITIONAL INFERENCE 

The preceding section ended on an all too familiar track in intensional 
semantics: a proliferation of logics. But, our perspective not only 
generates specific privileged logics - it also provides a means for 
investigating possible conditional inference patterns, without being tied 
to exclusive clusters. Thus, we can look at arbitrary inferential theories, 
asking for the conditional relations validating at least, or just these. This 
is not just the common question of 'modelling' some given logic: we are 
after the entire range of modellings, so to speak. 

First, consider pure if-patterns without connectives, expressing 
ordinary relational conditions. Of these, only reflexivity and transitivity 
are serious candidates. Then, earlier results from Sections 1.5., 2.6. 
express that 

(1) every reflexive transitive conditional is transmitting, allowing 
both strengthening of antecedents and weakening of consequents. 

(2) Modulo Variety, inclusion is even the only reflexive transitive 
conditional. In fact, the relevant argument would go through with even 
less: 

(3) Inclusion is the only conditional relation allowing strengthening 
of antecedents. 

This explains why 'non-monotonicity' is the hallmark of all current 
non-classical conditional logics. 

The above cluster of requirements is reminiscent of Scott (1971), 
who demands - in our terminology - the following fundamental 
properties for a 'conditional': reflexivity, transitivity, left- and right
monotonicity. Assuming Conservativity, (1) tells us that these postu
lates are not independent. Moreover, assuming Variety, (2) adds the 
insight that the only Scott conditional must be modal entailment. 

In addition to pure patterns, there are also mixed conditional 
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inferences, involving connectives - such as many of the axioms in 
Section 4.9. By way of illustration, we look at Conjunction in the 
present prespective. 

First, this principle follows already from the above two, on the basis 
ofM: 

THEOREM. Every reflexive transitive conditional satisfies Conjunction. 
Proof. Assume if AB, if A C. From the first, if A( B n A) (by CONS). 

From the second, if( B n A) C (as reflexive transitive conditionals are 
downward persistent), and hence if(B n A)(B nAn C) (by CONS), 
if( B n A)( B n C) (as reflexive transitive conditionals are upward 
monotone). By transitivity then, if A(B n C). 0 

To some extent, a converse is true as well: 

THEOREM (Quantity, Variety). On finite universes, all is the only 
conditional satisfying Conjunction. 

Proof. If if has this property, and if AB holds without A ~ B, then 
B n A ~ A and also if A(B n A). But then, by intersecting B n A 
with equally large distinct sets C n A (for which if AC, by Quantity), 
one obtains if AD for ever smaller sets D ~ A: and in the end, if A0. 
Therefore, by Variety, A = 0; and so A ~ B after all: a contradic
tion. 0 

On infinite universes, matters change. E.g., the infinitary conditional all 
but finitely many (as defined in Section 4.5.) satisfies VAR, CONJ 
without being transitive. 

This observation raises an interesting general topic, viz. the non
obvious connection between inferences among if-schemata which are 
valid on the finite sets, and those which are valid everywhere. 

Note also that the argument in the preceding proof can be gen
eralized to infinite cardinalities. For infinite b, when ai' b E if and az, b 
E if, with ai' a2 < b, then also a1 + az, b E if. Moreover, assuming 
V AR, the middle position b, b ~ if: otherwise, one suitable conjunction 
would yield b, 0 E if. 

Next, consider the sister principle of Disjunction. First, on the basis 
of M, this follows already from CONJ: 
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ifBC 
ifAC if(B v (A A B»(CV (A A B» 
if(A v B)(C v B) if(A v B)(C v (A A B» 

if(A v B)«C v B) A (C V (A A - B») 
if(A V B)(C V (B A (A A B» 
if(A V B)C. 

The converse is not true: the disjunctive conditional some or all lacks 
CONJ. 

So, the cumulative effect of all S-axioms on quantitative conditionals 
is just that of M + CONJ. Essentially, this leaves us with the couples 
0, n on the finite sets, and then, in the infinite realm, intervals a, b ... 
0, b (a < b); subject to the Confirmation constraint across the rows (d. 
Section 4.3.). Intuitively then, S-conditionals are those which are 
'classical' on the finite sets, and then tolerate a limited number of 
exceptions on the infinite ones (cf. Section 4.5.). 

A less standard example beyond S is the following 'dual' of Con
servativity: 

if AB if and only if if(A V B)B. (*) 

From left to right, this follows from M. The converse contains some 
strengthening of the antecedent. How much? As always, the quan
titative approach gives a useful impression. The above equivalence 
holds for if if and only if it satisfies the following numerical condition: 

a, b E if if and only if a, b' E if, for all cardinalities 
a, b, b'. 

So, if fills the tree of numbers in entire \-diagonals, as its behaviour 
depends on the number a only. (Thus, actually, it is more of a dual to 
the symmetric quantifiers of Section 1.5., whose behaviour depends on 
the number b only.) 

As a consequence, on the basis of M, any if-pattern satisfying (*) will 
have the monotonicity type ~MONt (cf. Section 2.2.). Indeed, the only 
M-principle needed here is that form of Confirmation which allows 
upward / -travel in the tree: i.e., clause (3) in Section 4.2. Question: is 
there a direct deduction from principle (*) together with Confirmation 
(3) to the above two monotonicity properties? 

There is an interesting general issue behind this question, concerning 
'completeness' of quantitative reasoning. Is there a general system of 
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conditional logic '" with the following property: whenever a set L of 
inference schemata for if implies another schema y for all quantitative 
conditionals if, then y is derivable from L via ",? Obviously, '" will 
include Boolean equivalences, as well as arbitrary substitutions for 
L-principles. But this seems insufficient by itself. The question makes 
sense for arbitrary quantifiers as well (d. Section 1.7.). 

Other mixed patterns arise when negation is introduced. The 
ubiquity of modal entailment shows again with the best-known in
ference of this kind. 

THEOREM (Variety, Extension). The only reflexive conditional satis
fying Contraposition is inclusion. 

Proof As always, A ~ B implies if AB. Conversely, suppose that 
if AB. Thanks to Extension, Strong Conservativity holds - and so we 
may argue: if AB, if(A - B)(A - A) (by Contraposition), if(A - B)0, 
A - B = 0 (by Variety): i.e., A ~ B. 0 

One important variation on the above theme is the completeness issue 
of, given a set of inference patterns, which conditionals validate 
precisely these. For instance, no specific conditional relation has been 
found yet validating the minimal conditional logic, and no more. 

These samples conclude our first foray from the extensional into the 
intension,al realm. 



CHAPTER 5 

TENSE AND MODALITY 

Conditionals may be viewed as relations between propositions, as we 
have seen, in striking analogy with the extensional treatment of deter
miners and quantifiers. But the more traditional intensional construc
tions are rather operators on propositions, such as modality or tense. 
Still, given the generalization made in Chapter 3 to arbitrary exten
sional categories, a similar move is possible for intensional notions. 
Instead of pursuing this topic in its full· generality, we present two 
concrete cases. 

5.1. TENSES IN REAL TIME 

Let us fix one temporal structure, the real number line IR. Tenses may 
be regarded as operations on propositions - which latter, in this 
model, correspond to sets of real numbers: the times when they are 
true. In the area of 'tense logic', a linguistic approach has been pre
dominant, tenses being thought of as all operations definable in some 
operator language with PAST, FUTURE, etc., or perhaps in some 
first-order predicate logic with temporal parameters (cf. van Benthem, 
1982b). For instance, the basic tenses in the Prior tradition are 

Fcp: it will be the case (at least once from now) that cp, 
Pcp: it has been the case (at least once before now) that cpo 

Combinations of these operations will then account for compound 
tenses (will have been, had been, would be). Modulo logical equi
valence, there are fifteen tenses of this kind on the real numbers 
(Hamblin's 'Fifteen Tenses Theorem'). Even so, there are tenses beyond 
this language; notably, the progressive (Lucas is crying), for which one 
may add a further operator, say IT. In the limit, such additions tend to 
converge to a more liberal medium of expression, viz. a first-order 
language on IR having special predicates =, < for identity and 
precedence of moments in time, as well as unary predicates, represent
ing slots for time-dependent component propositions. 

Example: For a moment of evaluation to, Fq may be written as 
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3t > toQt, Pq as 3t < toQt, and, e.g., ITq as 3t) < t03t2 > toVt(t) < t 
< t2 ..... Qt). 

Many other potential 'tenses' can be expressed in this way. One 
famous result in tense logic is Kamp's Theorem stating that all such 
first-order definable tenses on IR can already be defined in an operator 
language with two binary notions 

SINCE (p, q): 3t) < to (Pt) A Vt(t) < t < to ..... Qt» 
UNTIL (p, q): 3t) > to (Pt) A Vt{to < t < t) ..... Qt». 

These expressions correspond to temporal adverbs rather than actual 
tenses. 

In the present perspective, we are interested in an alternative, more 
structural approach. With all possible tense denotations viewed as func
tions from sets of reals to sets of reals, can we find suitable semantic 
constraints characterizing the ones actually realized in language? 

A first, obvious condition is that tenses respect only the temporal 
order. That is, in earlier terms, there is a maxim of Quality for such 
functions f: 

for all order-preserving automorphisms 1C of IR, 
lC[f(A)] = f(lC[A]), for all A ~ R. 

Equivalently, 

yEf(A) iff lC(y) Ef(lC[A]), forallyE R,A ~ R. 

All first-order definable tenses obey Quality; but the converse is not 
true. 

Against this background, a common mathematical condition (already 
prominent in Chapter 3) turns out to characterize the Priore an basic 
tenses, viz. Continuity: 

f( yAi ) = Y f(Ai)' for all families {Ai liE I), Ai ~ R. 

THEOREM. The only IR-tenses satisfying Quality and Continuity are 
precisely those defined by the schema 'f is some union of pa, pr, fu'; 
where 

pa(A)={yE R I forsomexE A,x < y) 
pr(A)=A 
fu(A)={yE R I forsomexE A,y < x). 
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Proof By Quality, a tense J can only have a limited range of choices 
for each singleton set (x} (x E R). J((xD either contains or is disjoint 
from each of the three regions (y E R I y < x}, (x}, (y E R I x < y} (see 
Figure 23). 

R 

x 

Fig. 23. 

For instance, if J(( xD includes any y, < x, then it will also include all 
other Y2 < x. (To see this, choose any IR-automorphism sending y, 
to Y2' by suitable 'stretching', leaving x and all y > x fixed.) Moreover, 
J makes the same choice for all x E R, again by Quality. (This time, 
one uses the fact that translations from, say, x, to x2 are IR-auto
morphisms.) Thus, Quality already enforces strong uniformity of be
haviour, in terms of the above three notions. Finally, Continuity implies 
that these pointwise choices determine the values of J completely at all 
larger arguments A, as J(A) = U X E A J(( x D. 0 

Notably, the progressive tense fails the Continuity test: it assigns the 
empty set to each singleton, and yet whole intervals are assigned their 
topological interior. Thus, to obtain a more liberal hierarchy of possible 
tenses, Continuity is to be relaxed progressively. Still, this much of its 
motivation remains clearly valid, also for the progressive: membership 
of J( A) must only depend, 'locally', on some 'episode' in A. This is 
expressed in the following condition of Bounded Continuity: 

Y E J(A) iff Y E J(Ao), 
for some bounded convex subset Ao of A. 

A generalization of the above argument gives us all qualitative 
bounded continuous tenses - being all finite unions of 

pa, pr, fu (as above) 
int, with int (A) = (y E R I y lies in some open A-interval) 
Ie, with le(A) = (y E R I y is a left-most boundary of some open 

A -interval} 
ri, with ri (A) the set of similar right-most boundaries; 
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as well as some variants: 

fu*, pa*, withfu*(A) = {y E R I open A-interval lies to the right of y) 
and pa*(A) its past dual, 

le+,ri+, with le+(A) = Ie (A) n A,ri+(A)=ri(A) n A. 

This classification is proved in van Benthem (1983c). The reader may 
form a fair impression of its proof by observing that, this time, the 
options are to be charted for all 'pilot cases' of bounded convex 
intervals: i.e., singletons as well as open, half-open and closed intervals. 
Again, Quality makes f accept or reject obvious regions in their 
entirety. 

There is still a linguistic aspect to this outcome, as progressives and 
'boundary tenses' (just arrived, about to go) are indeed about the next 
level of common occurrence. 

Relaxing Bounded Continuity even further, a more liberal hierarchy 
arises, whose natural endpoint seems to be the notion of mere 
Monotonicity for functions f: 

if A ~ B, then f(A) ~ f(B). 

Note that this is a consequence of both Continuity and Bounded 
Continuity. By then, infinitely many tenses will qualify: for instance, all 
first-order definable ones having only positive syntactic occurrences of 
their unary predicate parameter. 

Of course, the preceding analysis is still tied up with (dense, 
continuous) real time. It therefore becomes of interest to extend the 
analysis to other major temporal structures. For instance, on discrete 
integer time, the given characterizations are no longer valid. In partic
ular, many other 'tenses' besides the three basic ones satisfy both AUT 
and CONT, such as to-morrow, yesterday. (Technically, the reason is 
that the integers ZZ have far fewer automorphisms than the reals IR. 
In a sense, the topological order on ZZ also encodes metric structure.) 
So, one can search for additional constraints characterizing the basic 
tenses in discrete time, perhaps even: on all linear orders. Another line 
worth investigating is the behaviour of tenses on temporal interval 
structures, rather than point-based ones (cf. van Benthem, 1982b). 

Once we have this restricted view of tense, as a highly constrained 
class of operations on denotations of propositions, it seems reasonable 
to extend it to these propositions themselves. After all, although all 
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propositions denote sets of points in time (in the present limited 
setting), there is no need to endorse the converse: that all such sets 
correspond to propositions. And indeed, the more esoteric mathe
matical subsets of IR (say, all irrational points in time) hardly seem to 
qualify as the life times of natural language propositions. Thus, we can 
profitably study certain restricted ranges of propositional denotations. 
Prime examples are the convex (,uninterrupted') sets of reals, or at 
most, the finite unions of the latter (when allowing 'repetitive' events). 
In such a setting, the earlier questions of definability, but also tradi
tional concerns about axiomatizing complete temporal logics, assume 
new forms. Thus, much of traditional tense logic will have to be 
rethought. 

5.2. A STRUCTURAL VIEW OF MODALITY 

There is a certain formal similarity between the cases of tense and 
modality. So, we can repeat the above analysis of temporal precedence 
orders with accessibility patterns of possible worlds. Nevertheless, the 
situation is not wholly analogous, because accessibility seems to be 
more of a postulated construct than an independently given notion. 
Hence, one should proceed more cautiously, and more abstractly - as 
in the earlier chapter on conditionals. 

Consider modalities as unary operations m on sets of possible 
worlds (denotations of propositions). As a point of departure, attention 
will be restricted to quantitative operations, insensitive to world 
patterning. Of the basic postulates presented for conditionals, none seem 
directly applicable, except for Variety - in the sense that, on non
empty universes E, modalities shO..ild not be constant. 

As for more special features of modality, one obvious source is the 
so-called 'minimal modal logic' (cf. Chellas, 1980), whose central axiom 
is distribution of possibility over disjunction: O( cp V 1jJ) - 0 cp V 01jJ. 
For set functions m, this becomes the following principle: 

m(A u B)=m(A) u m(B), forallA,B~ E. 

This is a finite form of the earlier Continuity - and in fact, the motiva
tion of the distribution axiom would seem to support the latter in its full 
strength. 

In addition, there is the non-controversial T-axiom cp --+ 0 cp 
('actual truth implies possible truth'), whose semantic effect is to make 
modalities extravert (cf. again Chapter 3): 
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meA) :::2 A, for all A ~ E. 

Now, which set operations m pass all the above tests? Consider any 
non-empty finite universe E of possible worlds. As in Chapter 3, m 
must assign, for each argument A, some union of A, E - A. Moreover, 
as A ~ m(A), this can only be either A itself, or all of E. Also, m(0) 
must be 0: otherwise m(0) = E, and hence m(A) = E for all A (by 
Monotonicity, a consequence of Continuity), which would make m a 
constant function, contradicting Variety. Then, as before, consider m's 
behaviour on singletons. Either, it is the identity, and m becomes the 
identity throughout, or it assigns E, and m assigns E everywhere, 
except for its empty argument. Thus, as in Chapter 3, the quantitative 
setting produces only the most obvious 'classical' possibilities: 

THEOREM. The only quantitative T-modalities are the trivial one 
('plain truth') together with S5-modality. 

These arguments become slightly more interesting for the minimal logic 
without the T-axiom. (One curious alternative appears, viz. having m(0) 
= 0, m({ a)) = E - {a}, and meA) = E for all sets A ~ E having two 
or more elements.) Even so, the need for a more generous policy is 
obvious, if one is to obtain modalities weaker than S5. As in Chapter 4, 
here is where an accessibility pattern R is to be introduced, relaxing 
Quantity to Quality, i.e., invariance for R-automorphisms of the 
universe. Then, in line with the previous section, special accessibility 
structures may be investigated - say, the infinite binary tree of 
branching possibilities - pursuing the same questions as for tenses in 
Section 5.1. But actually, with the above abstract manner of introducing 
the relation R, it may be more appropriate to proceed differently. 

For instance, one might assume that the suitable R-patterns are 
merely defined by some class of first-order conditions on R; a not 
unrealistic assumption in modal logic. Or, there might even be a 
first-order theory f.l in R, X, Y, representing our semantic analysis of R 
and m, such that (E, R, A, B) 1= f.l if and only if B = m(E,R) (A). In the 
latter case, f.l defines Y implicitly, given R, X, in the usual semantic 
sense. Hence, by Beth's Definability Theorem, there must be some 
explicit first-order definition of the form 

V'z(Yz ....... T(Z, X, R)). 
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In other words, our modal operator m has a first-order truth definition 
in the theory fl. And then, we have returned to an earlier theme, being 
the range of possible truth definitions - and questions arise similar to 
those in Section 4.8. Notably, which syntactic restrictions on 1: are 
imposed by the laws of the minimal modal logic? This particular 
question will be answered in Chapter 9, be it with a somewhat different 
motivation. 

Here is a different perspective to conclude with. There is also a more 
direct way of construing the alternative relation R on our universes, as 
arising out of the minimal axioms. The following result may be found in 
Segerberg (1971 ): 

THEOREM. A modal function m satisfies the minimal modal logic on 
a universe E iff there exists some binary relation R on E satisfying 

m(A) = {y EEl for some x E A, Ryx}, for alIA ~ E. 

Proof. From right to left, this is standard. Conversely, set 

Ruv ~def U E m({ v}). 

By Continuity then, m( A) = U X E A m({ x}), and the above identity 
follows. 0 

Incidentally, this point of view is not restricted to modality. Returning 
to the previous case of conditionals, the same kind of analysis yields the 
following result. A natural hierarchy between occasions may be defined 
by the stipulation 

x :s:;; y iff iff x, y}{y}. 

THEOREM. A conditional generalized quantifier relation if satisfies 
the basic SUbjunctive conditional logic iff 

- its induced relation :s:;; is a partial order, 
- if AB is equivalent to Vx E A3y E A n B x :s:;; y. 
A proof may be found in van Benthem (1985a). 

Actually, on infinite universes, this representation becomes more com
plicated, involving an equivalence between if AB and 

Vx E A3y E A(x :s:;; Y A Vz E A(y :s:;; z -+ Z E B». 
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Quite similar considerations may also be used to obtain a temporal 
precedence relation from a basic conditional if X, then (next) Y. (In this 
case, the pervasive condition of Conservativity will not be met: but, this 
creates no insuperable problems.) 

Once a pattern of possible worlds has been introduced in accor
dance with the basic axioms, the effects of additional modal axioms will 
show up in further restrictions on the alternative relation. For instance, 
the characteristic axiom of T will now make R reflexive, and, e.g., that of 
S4 (<> <> lfJ -+ <> lfJ) enforces precisely transitivity. For a systematic 
study of such correspondences, see van Benthem (1 984a). 

These examples will suffice to show how we propose to enter the 
world of intensionality with the techniques of this book. 
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NATURAL LOGIC 

One recurrent 'underground' ideal in semantics is the construction of a 
natural logic, being a system of reasoning based directly on linguistic 
form, rather than logical artefacts. Thus, the ideal division of labour 
would come about, with the logician borrowing the linguist's gram
matical analysis in his account of inference, without having to set up his 
own shop for producing 'logical forms'. Some strands in this book tend 
in such a direction - and we shall examine the prospects for a natural 
logic in the light of the preceding chapters. 

The search for a natural logic is often viewed as a reactionary move, 
betraying a misplaced nostalgia for the age of traditional logic, which 
was in closer contact with natural language surface forms than its 
modern Fregean successor. But then, many notions of the generalized 
quantifier framework are indeed closely related to central concepts in 
pre-Fregean syllogistic. And so, to put the above enterprise in per
spective, we shall consider some connections with traditional logic first. 

6.1. ANALYZING TRADITIONAL LOGIC 

The main framework of Chapters 1, 2, with its relational format QXY 
for basic quantified statements, resembles what is called the Two Term 
Theory of predication, which dominated logic until the nineteenth 
century. Given this general analogy, various more specific notions and 
themes turn out to be related. For instance, some of the basic in
ferences in traditional logic, such as principles of Conversion ('sym
metry') or many syllogisms, have played an essential role in Sections 
1.5., 2.6. Also very conspicuously, the classical Square of Opposition 
appeared in various definability results. 

Of course, thanks to modern Fregean standards, such notions can 
often be treated somewhat more systematically in the present setting. 
For instance, the Square can be viewed as an instance of the general 
scheme of Figure 24 (with Q = all): 
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0 contraries 0# 

UI <:'0 ·e':J UI C :f)/I' 
0- ..... 0(,." Q/ 

0 -£ ~,V 0 
-+ C 
III ~ ..., 
:J 

Q/ 

0 
~l) Ole/. 0 -+ 

III .0 
UI O~ 01' . :J 

C; /ElS UI 

0* subcontraries 0'" 

Fig. 24. 

Here the following formal operations on quantifiers occur: 

Q -AB iff not QAB 
Q"' AB iff QA(A - B) 
Q* AB iff not Q"' AB 

( outer negation) 
( inner negation) 
(dual) 

For Q = all, these become the other three comers of the Square: not 
all, no and some. This general pattern is complete, in the following 
sense. Repeating these operations yields no new quantifiers: indeed, 
under composition, they form the 'Klein 4-Group' of Figure 25. 

id # 

id id # 

id # 

# # id 

# id 

Fig. 25. 

For a very general linguistic use of this schema, cf. Lobner (1984), 
who presents squares of determiners, connectives, temporal adverbs, 
intensional verbs, etc. - and compare also the 'propositional' Square in 
Section 3.1. 

Perhaps the most striking analogy has to do with Monotonicity. 
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Often considered a latter-day logical discovery, this notion lay at the 
heart of the syllogistic. Notably, downward mono tonicity of an expres
sion is what traditional logicians would call distributed occurrence of 
predicates: occurrences where the containing statement is true about 'all 
of the predicate' (i.e., about all parts of its denotation). Likewise, 
upward monotonicity reflects a central classical type of argument called 
the Dictum De Omni: 

'whatever is true of every X is true of what is X'. 

What this terse formulation comes to, in our terminology, is this. If 
every X is Y, and 'X' occurs in upward monotone position in some 
statement ... X ... , then that same statement holds for Y: ... Y .... 
The Dictum De Omni has been regarded as the principle par excellence 
governing syllogistic reasoning. And, its influence even extends beyond 
the latter into the logic of relations (d. Sommers, 1982). For instance, 
De Morgan's famous non-syllogistic relational example All horses are 
animals. Therefore, all horse tails are animal tails can be subsumed 
under it (by considering the true statement 'all horse tails are horse 
tails'). Thus, monotonicity seems a promising key notion for a natural 
logic reviving classical ideals (d. Section 6.2. below). 

Thanks to these connections, we can also analyze some of the basic 
principles of traditional logic in our generalized quantifier theory - an 
idea inspired by Van Eyck (1985). 

One pervasive presupposition of classical logic is Existential Import: 
statements QAB are only considered for non-empty predicates A, B 
(I). Once this is assumed, the Square of Opposition yields one obvious 
inferential connection: the basic quantifier Q (= all) implies its sub
alternate or dual (i.e., some) (II). (The other 'subalternacy' relation, that 
from Q # to Q -, is already a consequence of II - by the definition 
of #, -.) As a third basic classical principle, we select one form of 
Conversion, viz. that for the opposite quantifier: Q# AB iff Q# BA, for 
all A, B (III). (Again, conversion for the dual quantifier Q* is already 
a consequence of III.) Note that these conditions represent special 
features of the quantifiers in the classical Square, which need not hold 
for other quartets of expressions related by #, -, *. Indeed, within 
the field of logical quantifiers (as defined in Chapter 2), these three 
syllogistic principles determine precisely the quantifier Q = all and its 
descendants. 
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THEOREM. The syllogistic principles I, II, III determine exactly the 
intended interpretation of the Square of Opposition. 

Proof. First, in the Tree of Numbers (Section 2.2.), the four intended 
quantifiers have aceptance patterns satisfying these three conditions. 
Conversely, consider any non-empty quantifier pattern Q. The geo
metric constraints corresponding to the above three principles are as 
follows. I merely amounts to disregarding the top node (0, 0) - leaving 
a starting row (1, 0)-(0, 1). As for II, note that Q - denotes the 
complement of Q, Q'" its mirror image along the axis (n, n) (n ~ 1), 
and Q* the latter's complement again. In particular, then, no central 
position (n, n) itself (n ~ 1) can belong to Q. (Otherwise, (n, n) E Q, 
(n, n) ~ Q*: contradicting II.) Finally, III expresses symmetry of Q '" . 
By a standard argument (cf. Section 1.5.), this amounts to dependence 
on the right-hand number only: for any b, (a, b) E Q# iff (a', b) E Q#, 
for all a, a'. Geometrically, then, Q itself must consist of entire 
north-west\south-east diagonals. The final argument becomes this. If 
Q is non-empty, it must also contain a diagonal like above, of the form 
{(a, b) I b ~ OJ. Now, if a ¥- 0, this set will contain the pair (a, a) with 
a ~ 1: quod non. Therefore, the only possibility is the right-most edge 
of the tree - which is the pattern of the quantifier all. 0 

This result expresses, in a sense,that the Syllogistic is complete with 
respect to its subject matter. 

The above is a 'denotational' analysis, in terms of structural con
straints. There remains the more traditional viewpoint of the descrip
tion of valid inference, without immediate semantic reflection. The 
perspective of this book throws some new light on this old task too. 

6.2. LOGIC BASED ON GRAMMATICAL FORM 

What is needed to set up a natural logic with ordinary grammatical 
structures as its vehicle? An instructive example is provided by mono
tonicity reasoning, a central feature in traditional logic, as we have seen. 

One important idea, implicit in the formulation of the Dictum De 
Omni, is that inference rules can be global, operating at statement level, 
without presupposing any proof-theoretic fine structure analysis. At 
least in an intuitive psychological sense, this seems realistic. For the 
present case, this means the following. There is a general inclusion or 
implication orderb on arbitrary denotations (cf. Chapter 3), generaliz
ing specific notions of consequence, such as set inclusion for predicates 
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(all XY) or ordinary ::;;; on truth values (material if, then). Other 
examples are implications between adverbs (very loudly!;;; loudly), 
adjectives (red and angry!;;; red, Dutch!;;; European), or determiners (at 
least five!;;; at least three). Now, occurrences of expressions in other 
expressions can be inferentially sensitive to this general implication 
relation. More precisely, let us call an occurrence of an expression 
X in an expression cp = ... X . .. positive if [X] !;;; [Y] implies 

+ 
[ ... X ... ]!;;; [ •.. Y ... ] (notation: ... X ... ). An o~currence is nega-
tive if the inverse correspondence holds (notation: ... X ... ). 

When read in dynamic terms, positive occurrence of X in cp means 
both: increasing the denotation of X will at most increase that of 
cp/decreasing the denotation of X will at most decrease that of cpo So, 
the main point of the distinction +/- is not any privileged direction, 
but that of direct versus inverse correlation. 

Now, in order to exploit positive and negative occurrences in 
inference, they must be syntactically available. Thus, this information 
must have been built in during the very process of sentence formation. 
(Actually, there are various more theoretical questions concerning the 
connection between the above semantic and other, more syntactic ways 
of defining 'positive'/'negative' occurrences. Compare also Section 2.5.) 

Inference marking of inferentially sensitive positions requires several 
phases. First, the 'logic' of certain lexical items consists (partly) in their 
+/- effects on their linguistic environment. Then, the +/- effects of 
various grammatical rules have to be taken into account. And finally, 
the +/- effects of nesting of such markers are to be established by 
some rule of calculation. In this way, sentences are constructed (or 
understood) with marked inferentially sensitive positions of key items. 
This process may be spelt out as an algorithm on phrase structure trees. 
Here, we shall only outline the construction. 

First of all, a specific grammar is needed - here: a simple set of 
phrase structure rewriting rules. These are then to be marked for their 
+/- behaviour in a suitable manner. For !he basic rules of Chapter 1, 
this works out as follows: 

+ 
S => NPVP. 

The reason is this. In 'subordinating' phrase structure rules, the Junctor 
gets a + marking. Similarly, 

+ 
NP => DetN. 
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To be more precise, this rule says that, within any subexpression NP, its 
Det occurs in positive position. This is 'local' information, as the NP 
itself may be deeply embedded - which may affect the final position of 
Det in the whole expression: itself +, - or neutral. 

Another, entirely trivial case are the rules 
+ 

NP ~ PN (proper names) 
+ 

VP ~ V (intransitive verbs). 

Transitive verbs work along the earlier line: 
+ 

VP ~ VNP 

Note the marking here. The V-position is (usually) governed by the 
direct object NP, rather than vice versa: witness the three cases lote a 
dog, love no dog and love one dog. 

Another general pattern is found with more 'coordinating' phrase 
structure rules. These are treated conjunctively: 

+ + 
N ~ Adj N (intersective adjectives) 

+ + 
N ~ N R (relative clauses) 

Finally, here is one syncategorematic rule: 
+ 

R ~ whoVP. 

Moreover, monotonicity effects of specific lexical items are to be 
acknowledged. For instance, some determiners have the double mono
tonicity behaviour described in Section 1.4. To some extent, this may 
even exhaust their 'logic', witness the definability theorem for the 
Square of Opposition. Connectives also have their expected behaviour 
- here displayed in a convenient syncategorematic form: 

+ + + + + 
V ~ VandV (or even V and V). 

But also, or gets the same marking: monotonicity does not exhaust the 
'logic' here. Then, of course, negation reverses direction. Here is a 
sample rule: 

-
V ~ notV 
+ -

(Or even: not V. A bit clumsily, '(does) not bow' implies '(does) not or 
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hardly bow with a smile'.) One last example shows one subordinating 
connective of Chapter 4: 

- + 
S => itS, S. 

These lexical indications are not precise as they stand - because one 
item's sphere of action may extend beyond its immediate phrase struc
ture rule (witness the determiners). This aspect works out somewhat 
more smoothly in a categorial grammar, where lexical items carry type 
information encoding several arguments, which can be marked already. 

- + 
E.g., all could be construed as having type « e, t), « e, t), t». 

Finally, the rule of over-all calculation for nesting is simply algebraic 
multiplication: 

++=+,+-=-,-+=-,--=+. 

Putting all this together, concrete sentences can be inferentially 
marked. Some examples are shown in Figure 26. 

Fig. 26. 

The first example is straightforward - and its predictions are borne 
out in practice. The sentence indeed implies: that no pretty girl loves a 
cat, no girl desperately loves a cat, no girl loves a curly cat. These 
inferences can become blocked in quite similar cases. For instance, the 
determiner one has no monotonicity effects in either argument, and 
hence it stops the + markers on lotes a c~t from surfacing: one girl 

+ 
loves a cat. Another kind of barrier arises in cases such as a cat and 
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no dog appeared, where the two determiners disagree on the marking of 
the verb phrase. As long as they work in tandem, however, markings 

+ - + 
do percolate to the surface: a cat and all dogs appeared. The second 
example introduces no new points of principle. 

Another way of computing the first example uses categorial grammar 
again. No will have type (p, (p, t)) (with P = (e, t)), girl has p, loves 
(e, p), a (p, (p, t)), cat p. Then, function/argument combinations work 

- - + + + + 
out as follows: no girl (p, t), a cat (p, t), loves a cat p. In the latter case, 
the type for a cat has been 'lifted' to obtain « e, p), (e, t)): a procedure 
described in full detail in Chapter 7. Then finally, no girl loves a cat 
receives type t. A further analysis of inference marking in a flexible 
categorial grammar is given in van Benthem (1986a). 

Now, how much inference is accounted for by the above mechan
ism? We consider a few cases. 

Example (syllogistic reasoning). Of the four valid syllogisms in the 
'First Figure', three are immediate consequences of the above. These 
are Barbara (all MP, all SMI all SP), Celarent (no MP, all SMI no SP) 
and Darii (all MP, Some SMI some SP). The fourth, Ferio (no MP, 
some SMI not all SP) requires some additional reasoning, however. 

More specifically, Barbara goes like this. The first premise all MP 
serves as a 'cue' for the presence of an !;;;; -relation. Then the second 

+ 
premise is marked thus: all SM - and the conclusion follows. With 

+ 
Ferio, one can argue: no MP, some SM, all SP - no MP, some PM -
no PM, some PM - contradiction. Thus, in addition to Monotonicity, 
Conversion is needed, as well as propositional Reductio ad Absurdum. 
An alternative would be to read no MP as a cue for [M] !;;;; [non-P] 
or [P] I;;:; [non-M], turning the second premise into some S non-P, 
which reduces to not all SP. 

Example (propositional reasoning). Many well-known propositional 
inferences revolve around monotonicity. Examples are Modus Tollens: 

- + + 
p ..... Q, I Qh P, and Constructive Dilemma: p ..... R, Q ..... R, P V Q 
I R. Actually, in the latter case, an additional principle is used, viz. the 
Boolean identity R V ~ = R. Further e~amples require more formal 
tricks, such as I (P 1\ Q), Q - I (P 1\ Q), true ..... Q - I (P 1\ true) 
- I P. And, many elementary steps, such as P 1\ QIP, do not fit this 
mould at all. 

Still, monotonicity is involved in many propositional inferences, 
especially less elementary, and more interesting ones. (Compare also 
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the earlier point about 'global' inference.) Here is one more general 
example. Let there be two premises, of any complexity, which are 
'linked' in the following sense: one has a positive occurrence of P, the 
other a negative one. Then, intuitively, there ought to be some typical 

+ -
combination of the two, via the 'bridge' P - as in P -+ Q, Q -+ R / 

+ 
P -+ R. And indeed, there )s. Observe that a (P) is equivalent to 
a(true) A (P v a (jalse», {3(P) to {3(jalse) A (P -+ {3(true». Therefore, 
we may draw the following inferences from our premises singly: 
a(true), {3(jalse); as well as a(jalse) v {3(true) from the two combined. 
For instance, with some obvious calculation on true, false, one has 

+ -
I (P A I (Q A R», (P A Q) -+ Rh (P A I R), true, 
I P V (P -+ R); i.e., P -+ R. 

These are still schematic applications, to formal languages. Natural 
language examples are to be obtained using the above phrase structure 
grammar. There are some interesting discrepancies between the two 
cases. Note, for instance, that the syllogism Barbara cannot even be 
expressed directly in our fragment. Circumlocution is required, using 
participles or relative clauses: 'All girls wept. All weepers/those who 
wept, were afraid. Therefore, all girls were afraid'. Likewise, the earlier 
fundamental principle of Conservativity requires the use of adjectives 
or relative clauses: 'all girls wept' if and only if 'all girls were weeping 
girls/were girls who wept'. So, applying monotonicity patterns in natural 
language takes more than mere substitution: viz. a judicious look 
through linguistic wrappings. The moral is that inference is an art of 
omission as well as combination. 

As was clear in the above examples, monotonicity reasoning is to be 
augmented with various other types to describe our natural logic. The 
preceding chapters suggest a systematic policy here. First, there are 
general principles deriving from the implication relation ~ as such. It is 
transitive and reflexive, and hence so are its cue words (all, material if, 
then). Moreover, this order forms a lattice with greatest lower bounds 
(and) and lowest upper bounds (or), with their usual properties. (This 
explains why these connectives are so ubiquitous.) Perhaps also, nega
tion should be included at this level - making all axioms of Boolean 
Algebra available (i.e., the full propositional calculus). Next, various 
categories of expression may contribute their own broad inferences. 
One notable example is Conservativity for determiners. With each such 
addition, inferential power may increase in unexpected ways. 
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Example. Conjunction follows from Monotonicity and Conservativity: 

allXY 
-- + 
allX(YandX) allXZ 

allX(YandZ) 

Then, specific lexical items may have their particular base logic - such 
as Conversion (symmetry) for some, no. And also, we need 'defini
tional' connections, such as the equivalence between not every and 
some . .. not, or not a and no. 

Example. Some quantifier interchanges: 
Some girl loves no cat, some girl loves not a cat, not every girl loves a 

cat. Here, we observe a marking, and use the implication [every] I;;; [a] 
(assuming Existential Import) to obtain not every girl loves every cat. 

Even in this sketchy form, the mechanism of a modest natural logic 
will have become clear. 

Of course, natural language fragments like the above also have a 
'Fregean logic', through the usual transcription into predicate-logical 
form. Thus, the vexed controversy between classical and modern logic 
can be given an exact content. How do the two logics compare for 
various fragments of natural language? In particular, when is the natural 
logic of some fragment complete with respect to its Fregean rival? In 
this way, a philosophical quarrel becomes a matter of research. 

It remains to be noted that there is quite a tradition of attempts at 
rehabilitating pre-Fregean logic. One very interesting school devoted 
to this program is that of Sommers (1982) and his followers. (See 
especially Englebretsen (1981) for an attempt at formulating a logic on 
some sort of linguistic form.) 

Roughly speaking (it is rather hard to fathom), Sommers' system 
consists of the following ingredients: a monotonicity calculus, algebraic 
working rules for connectives, and a logic for the operators of Quine 
(1966) (cf. Section 3.1.) handling permutation, identification and pro
jection on argument places of predicates. Thus, quite different mechan
isms are to be added to the simple monotonicity calculus if the full 
power of Fregean logic is to be approximated. This points at an 
interesting moral. From the present point of view, 'predicate logic' is a 
conglomerate of quite diverse mechanisms of inference: some relatively 
elementary, taking a free ride on the grammatical construction of the 



NATURAL LOGIC 119 

sentence (as in the above), others requiring inspection of more complex 
structures at a late stage of utterance. Notably, manipulation of in
ferences in the presence of anaphoric connections may be such a 
'higher' facility. The latter comes in which we have to recognize, say, 
Modus Ponens in such varying patterns as the following: 

if Julia tries, she will succeed 
she will succeed 

if Julia tries, she will succeed 
Julia will succeed 

if she tries, Julia will succeed 
she will succeed. 

Julia tries 

she tries 

Julia tries 

Clearly, such inferences are pieces of discourse, and our processing of 
them requires inferential mechanisms at text level. 

Thus, 'logic' is becoming an ever more elusive (though also omni
present) notion in this book: occurring across all linguistic categories 
(see Chapter 3), and at various levels of linguistic processing, as we 
have seen here. 



PART II 

DYNAMICS OF INTERPRETATION 



CHAPTER 7 

CATEGORIAL GRAMMAR 

Sentences of natural language may be analyzed as having a function! 
argument structure, as was originally observed by Frege. For instance, 
in Julia weeps, the verb acts as a functor assigning a truth value to 
entities mentioned in the proper name position. But also, e.g., in Julia 
weeps bitterly, the adverb may be regarded as denoting a function from 
verbs to (complex) verbs. Thus, the interpretation of natural language 
expressions involves a hierarchy of functions - and the task of a 
categorial grammar is to assign suitable types of function (,categories') 
to linguistic expressions, so as to make the puzzle 'fit'. This chapter 
is concerned with some logical aspects of the categorial mode of 
description. 

7.1. THE ORIGINAL VERSION 

As in Chapter 3, there are two basic types t ('truth value') and e 
(,entity'), with complex types generated recursively by the rule 'if a, b 
are types, then so is (a, b)'. Expressions of type (a, b) denote functions 
mapping type a-denotations to type b-denotations. Simple expressions 
of natural language will now be assigned some type, while sequences of 
expressions mayor may not receive a type through 'functional applica
tions' of their component types. This is the basic idea of Ajdukiewicz' 
'categorial grammar'. (In general, other basic types could occur too; 
and also, in case of ambiguity, simple expressions could be assigned 
multiple types.) 

Here are some samples of type assignment. Negation (not) takes 
sentences to their negations: type (t, t). Conjunction (and) conjoins two 
sentences to form a new one: type (t, (t, t)). The above intransitive verb 
weep had type (e, t), while a transitive verb (love) takes two entities to 
a truth value: (e, (e, t)). The above adverb (bitterly) would have type 
« e, t), (e, t)). Finally, in general, expressions in subject position may be 
more complex than just proper names (witness every lady weeps), in 
which case they receive type « e, t), t). I.e., in general, subjects operate 
on predicates, rather than vice versa. Other important types are found 
in the table of Section 3.3. 

123 
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Now, evaluation takes place as in the following example. 

Not (every lady) loves Romeo: 
(t, t) (( e, t), t) (e, (e, t» e. 

The following sequence of applications shows this to be a sentence: 

(t, t) 
(t, t) 
t. 

(( e, t), t) 
t 

(e, t) 

Evidently, not every sequence evaluates to a sentence, witness every 
lady Romeo. On the other hand, sequences which do have an outcome 
t (or any other single type) may arrive there in different ways; some
times (not always) corresponding to non-equivalent 'readings'. For 
instance, consider 

Not (a lady wept) all that year: 
(t, t) t (t, t). 

One analysis combines the left-most types first (all that year (not . .. », 
the other starts with the right-most types, producing the different scope 
reading not ( all that year. . . ). 

As it stands, this is still a very crude way of linguistic description. 
For instance, functional application is allowed both ways, whereas 
natural language has constraints of 'directionality'. Standard categorial 
grammars account for this by asymmetric encoding of arguments, with 
the familiar slashes a\ b, b/a introduced by Bar-Hillel to indicate left
or right-searching operators. Important as it is, directionality - and 
indeed descriptive 'fit' - will not be a major concern in this chapter. 
Throughout, a simple non-directed version will be used as a vehicle for 
exposition. The insights obtained in this way will probably generalize to 
the more sensitive categorial grammars employed in actual linguistic 
description. 

Even so, the above simple calculus already has its problems; of 
which we mention one. Notably, there remain certain 'missing readings', 
as with (Every crook) fears (some detective): (( e, t), t) (e, (e, t» (( e, t), 
t). This sequence cannot be evaluated to the sentence type t as it 
stands. Perhaps the best-known remedy is that of Montague Grammar: 
re-categorize transitive verbs as ((( e, t), t), (e, t». (There still remains 
the question of obtaining enough different readings for this sentence: 
cf. Section 7.3.) The price to be paid for this solution is the failure of 
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the basic sentence Julia loves Romeo: e «( e, f), f), (e, f» e. To make 
the latter come out right again, proper names are to be 'lifted' to type 
« e, f), f) as well. A more attractive general solution to the problem of 
transitive verbs will be presented below. 

By and large, categorial grammar has remained an undercurrent in 
linguistics, much as the related type-theoretical approach has been in 
logic. Nevertheless, its more flexible version to be introduced now has 
additionallinguistical and logical interest. 

7.2. MORE FLEXIBLE VERSIONS 

Expressions of natural language need not stay in their basic category, 
but can assume higher types when desired for the purpose of inter
pretation. For instance, the negation particle nof can also behave as 
predicate negation (does nOf cry) or subject negation (nof every lady). 
Still, there is a system to such type changes: not anything goes. Thus, 
Geach (1972) has proposed the following rule for deriving higher 
occurrences from the basic one: 

G if an expression occurs in type (a, b), then it may also occur 
in any type « c, a), (c, b» (for arbitrary c). 

This proposal has some pleasant effects. First, it accounts for the 
various uses of negation, starting from one basic assignment (f, f) 
(sentential negation), such as intransitive verb negation: (e, f), (e, f), and 
then, iterating, also transitive verb negation: (e, (e, t», (e, (e, t», etc. In 
the original grammar, a host of initial types would have to be postulated 
for the lexical item nof, without capturing its essential unity of meaning. 

Next, even with their original intended type, transitive verbs now 
allow for the earlier complex direct objects. For instance, Every crook 
fears some defective may be evaluated as follows: 

« e, t), t) 
« e, f), f) « e, t), t) 
f. 

(e,(e,f» 
(e,(e,t» 
(e, t) 

« e, f), t) 
«( e, (e, f», (e, f» (!) 

Also, additional readings appear. Until now, (no lady) wept (all thaf 
year) could only be read as follows: « e, t), f) (e, f) (f, t), and then 
f (f, t), and finally t: i.e., 'all that year (no lady)'. But now, the inverse 
scope reading 'no lady (all that year)' may also be obtained: 
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« e, t), t) 
« e, t), t) 
« e, t), t) 
t. 

(e, t) 
(e, t) 
(e, t) 

CHAPTER 7 

(t, t) 
(e, t), (e, t) (!) 

In addition to G, other rules may be considered, such as, after all, 
the lifting rule from Montague (1974): 

M If an expression occurs in type a, then it may also occur in 
any type « a, b), b) (for arbitrary b). 

This rule lifts proper names from type e to « e, t), t), so as to obtain 
one homogeneous class of subject type. (This again can be motivated by 
pointing at phenomena of 'coordination', such as Potgieter and a few 
Boers crossed the Vaal.) It also allows for general changes in the order 
of application. Instead of evaluating (a, b) + a to b, one may now also 
evaluate as (a, b) + « a, b), b): reversing function and argument roles. 

At this point, it should be recalled how G and M arose very 
naturally already in the categorial model theory of Section 3.3. (Indeed, 
the latter appeared as a special case of the former.) 

This flexible approach has been used recently in diverse areas of 
semantics (d. Bach, 1984). One example is argument inheritance in 
morphology (cf. Moortgat, 1984). Deverbal nominalizations such as 
'build-ing' inherit argument positions from the underlying verb, as 
shown in 'building Xanadu'. Now, prima facie, -ing takes an activity 
(type (e, t» to an object (type e): and so it has type « e, t), e) itself, 
leaving no room for further arguments. But, e.g., by the rule G, the 
latter type can also occur as « e, (e, t», (e, e», allowing building to be 
of type (e, e), having a slot for a 'postponed' argument Xanadu. 

Another example concerns NP-structure (d. Hoeksema, 1984). In 
many languages, such as Iraqi Arabic, there is strong syntactic evidence 
against the Montagovian analysis of NPs with relative clauses R, as 
being of the form Det (N R). They should rather be (Det N)R. Using 
the above mode of combination, the correct semantic reading can be 
obtained, saving syntactic appearances: 

Let p = (e, t). There are even two ways of proceeding: 

(i) Det N 
(p, (p, t» p 

(p, t) 
(p, p), (p, t) (G) 

(p, t) 

R 
(p,p) 
(p,p) 
(p,p) 
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(ii) Det N 
(p, (p, t» p 
«p, p), p), «p, p), (p, t» (G) «p, p), p) (M) 

«p, p), (p, t» 
(p, t). 
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R 
(p, p) 
(p,p) 
(p,p) 

Corresponding readings will be given in Section 7.5. (As it turns out, 
(ii) is the correct analysis.) 

Finally, in this comparative linguistic mode, the present approach 
also enables us to lift the apparent initial restriction in Chapter 1 to 
SVO-languages. Other major sentence structures in quite diverse 
natural languages can now be handled too (cf. Zwarts, 1985, on the 
categorial analysis of SOY and VSO). 

There is also a different, more general kind of motivation for a 
flexible approach to categories and their combinations. In Chapter 10, 
the present categorial grammar is used, not to match a pre-established 
norm of 'grammatical correctness', but rather to provide an indepen
dent notion of 'semantical interpretability' with which the former may 
be compared. 

7.3. THE LAMBEK CALCULUS 

As it happens, perhaps the most elegant version of a flexible categorial 
grammar had been proposed already in the little-known paper Lambek 
(1958). A 'non-directional' version of Lambek's system will be the 
paradigm in what follows. 

The mechanism of type change shows striking resemblances with 
logical calculi of natural deduction for conditionals (in the 'vertical' 
tradition; cf. Chapter 4 for the 'horizontal' mode). 

Using this insight, Lambek constructed a calculus of sequents 

A =? b, or A =? B; 

meaning that the sequence of types A = ai' ... , an reduces to the 
single type b, or to the sequence of types B = b l , ••• , bm • In our 
presentation, the axioms and rules of the Lambek calculus L will be the 
following: 

(1) a=?a 

(2) a (a, b) =? b (a, b) a=? b (junction-elimination) 

(3) A a=? b a A =? b , for non-empty A 

A =? (a, b) A =? (a, b) (junction-introduction) 
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(4) A~b 

BAC~BbC (replacement) 

(5) A~B B~ C 
A~C (transiti vity) 

These rules capture the earlier idea of evaluation. A sequence of 
expressions evaluates to a type a, if, starting from the corresponding 
sequence of original types, some succession of admissible type com
binations and replacements yields the single type a. 

Example (derivation of M and G): 

M: a (a, b) ~ b 

a ~ «a, b), b) 

G: (c, a) c ~ a 

(~ b) (~ a) c ~ (~ b) a (a, b) a ~ b 

(a, b) (c, a) c ~ b 

(a, b) (c, a) ~ (c, b) 

(a, b) ~ «c, a), (c, b». 

The analogy with logical deduction shows already in the rules. 
Function elimination is like Modus Ponens, while function introduction 
corresponds to Conditionalization. 

Example (a logical law). 
Here is a derivation ofthe logical law (a -> (b -> c» -> (b -> (a -> c». 

a (a, (b, c» ~ (b, c) 

a (a, (b, c» b ~ (b, c) b 

a (a, (b, c» b ~ c 

(a, (b, c» b ~ (a, c) 

(a, (b, c» ~ (b, (a, c». 

(b, c) b ~ c 

Nevertheless, other logical laws may fail. For instance, a ~ (b, a) is 
underivable, as it requires a 'vacuous' conditionalization. Also, (a, (b, 
c» ~ «a, b), (a, c» is underivable, as it requires using an assumption 
twice - a practice not allowed in our type evaluation (as it stands). 
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Thus, in a sense, we are now studying the logic of uses of premises - in 
itself, also a task of logical interest. 

The calculus L has several useful meta-properties. Notably, streng
thening rule (4) to replacement by arbitrary sequences adds no new de
rivable sequents to the system. One proves this by observing that, in the 
extended system, every derivable sequent a], ... , an => bl> ... , bm 
gives rise to a decomposition of a], ... , an into m successive sub
sequences A]', ... , Am' such that AI' => b l , ... , Am' => bm are all 
derivable in the original calculus. 

The great strength of non-directional rules also shows in the follow
ing observation. 

THEOREM. If A => b is derivable, then so is A' => b, for any permuta
tionA' ofA. 

Proof As every permutation is a composition of interchanges be
tween neighbours, it suffices to show that, if Abl b2 C => d is derivable, 
then so is Ab2bl C => d. The following example shows the general 
principle at work. a]a2blb2clC2 => d, ala2blb2cI => (c2, d), ala2b]b2 => 
(c], (c2, d», a2b]b2 => (a], (c], (c2, d»), b]b2 => (a2, (a], (c l , (c2, d»», 
bl => (b2, (a2 , (ai, (c], (c2, d»»), b2bl => b2 (b2 , (a2 , (a], (c l , (c2, d»») 
=> (a 2, (a], (c], (c2 , d»», a2bzb] => a2 (a2 , (ai' (c], (c2 , d»» => (ai, (c l , 

(c2 , d»), etc. to a] a2b2 b] c] C2 => d. 0 

Using this insight, one may as well re-axiomatize the calculus L by 
having just one version of each earlier rule, adding a principle of 
Permutation: 

A=>b 
.7l'[A 1 => b ,for all permutations .7l' of the sequence A. 

(6) 

It should be realized, however, that this feature makes some of the 
earlier applications somewhat problematic. For instance, NP structure 
Det N R can now be read in any order: which may be more than we 
bargained for. If so, judicious constraints on (6) will have to be imposed 
eventually. On the other hand, the frequent occurrence of permutations 
of phrases (e.g., in relative clauses or questions) is an undeniable fact of 
linguistic life. (See also Section 7.8. for a point of descriptive strategy 
here.) 
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Natural Deduction 

In actual practice, a tree-format with natural deduction rules makes the 
calculus L easier to handle. Again, there is an elimination rule (Modus 
Ponens) and an introduction rule (Conditionalization), just as in 
ordinary implicational logic. The difference with the latter is slight, but 
subtle. It resides in the so-called 'structural rules' for inferences: each 
conditionalization is to withdraw one occurrence of a premise, no 
more, no less. (So, the ordinary rule of 'Thinning' for premises is not 
allowed. On the other hand, 'Permutation' of premises is still admis
sible, at least in the present version of L.) Incidentally, the 'ordinary' 
variant here yields the so-called constructive or intuitionistic implica
tiona I logic l. Amongst others, I still lacks classical tautologies such as 
Peirce's Law«q -+ p) -+ q) -+ q. 

Example. Lifting transitive verbs, and lowering them. 

I 2 I 

e e, (e, t) e e, t 
2 

e, t (e, t), t t 
-1 

t (e, t), t « e, t), t), (e, t) 
-1 

e, t 
-2 

e, t 
-2 « e, t), t), (e, t) e, (e, t) 

This two-way reduction is not available, e.g., for e and (e, t), t. 
Example. Det N R structure. 
Here are two different proof trees for the sequent 

p, (p, t) P p, P '* p, t: 

(i) p p,p 

p p, (p, t) 

p, t 

(ii) 
I 

P p,p P p, (p, t) 

P p, t 

t 
-1 

p, t 
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Other examples from preceding chapters with easy proofs are 
- 'homomorphic inflation': (b, a) ~ (a. t), (b, t); 
- determiners in direct object position: 

(e, t), «e, t), t) ~ (e, t), «e, (e, t», (e, t». 
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By varying proof trees, the power of this mechanism emerges. For 
instance, argument order can be reversed as follows: 

I 
e e,(e,t) 

2 
e (e, t) 

t 
-- -1 
(e,t) -2 

e, (e, t) 

As a result, a standard example such as Every boy loves a girl gets four 
proof trees, corresponding to four different readings - again, an 
abundance which may have to be limited eventually. 

Finally, another point of application should be noted. The motivation 
in the original examples was this. Traditional categorial grammar 
assigns initial types, after which the only mode of combination is 
'function application'. The corresponding natural deduction trees have 
only Modus Ponens, so to speak. We then aliowed 'type shifts' for 
single expressions, so as to get greater flexibility; after which the old 
process of application leads to a single final type. But now, a more 
radical view is possible too. Just call those sequences A recognizable to 
type b for which there exists a calculus proof going from A to b -
regardless of how this is effected (with a final Modus Ponens phase or 
not). We shall adopt the latter point of view henceforth. Nevertheless, 
one could search for some kind of 'normal form' for proofs, consisting 
of a top part with 'inflation rules' for single types, followed by a bottom 
part with Modus Ponens only. The inflation rules needed for this 
purpose turn out to be generalized forms of G and M (cf. van Benthem, 
1985e). 

7.4. RECOGNIZING POWER 

The first meta-theoretical question about the Lambek calculus con-
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cerned its decidability. As we have seen, L is formally similar to the 
intuitionistic calculus I, whose decidability had already been established 
by a 'Cut Elimination' method from proof theory. Extending this 
method to L, Lambek showed that his original calculus (which has 
directed slashes \, I) is decidable: there exists an algorithm for deter
mining whether any given sequent A => b is derivable. For the present 
non-directed version, an analogous proof applies (W. Buszkowski, 
personal communication). 

One way of viewing the Lambek proof is as showing that L can be 
presented equivalently as a 'cut-free' calculus, whose rules at most 
increase complexity: 

(1) a=>a 

(2) A=>b B, c => d 

A, B, (b, c) => d 

(3) A, b => c 

A=> (b, c) 

(4) 'Permutation' 

For meta-theoretic purposes, the latter version often has its advantages. 
The next obvious question concerned the weak recognizing capacity 

of L. More precisely, starting from a finite alphabet, one assigns types 
(one or several) to each symbol, and then recognizes a language consist-
ing of all those strings SI' ... , Sk for which there exists a corresponding 
sequence of initial types aI' ... , ak such that al ••• ak => t is derivable 
in L. (Here, t is any distinguished type for sentences.) Mathematical 
linguists have been interested in the position of L (as a language
accepting device) in the Chomsky hierarchy of formal languages. An 
early proof from the sixties purporting to show that directional L
grammars accept precisely all context-free languages was recently 
shown to be defective (ct. Buszkowski, 1982). But, the latter author has 
a revised version for the uni-directional variant of L. 

Still, even if the Lambek grammars were to recognize no new 
languages beyond the context-free realm (and hence, beyond what was 
already recognized by traditional categorial grammars), their strong 
recognizing power (providing additional structures for sentences) would 
remain a virtue. 
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For the present non-directed calculus, the problem of recognizing 
power is open. Of course, there are context-free, and even regular 
languages beyond its grasp - viz. those where the order of symbols is 
essential. For, the Permutation property of L has the effect that all 
permutations of strings recognized will also be accepted. On the other 
hand, some languages of this 'permutation-closed' kind will be re
cognized which are not context-free. An example is the set of all strings 
with equal numbers of the symbols a, b, c (cf. also Section 8.3.). It can 
be recognized by taking a traditional categorial grammar for the related 
regular language (abc)* (i.e., all strings consisting of a number of copies 
of abc) with the full L-rules on top. 

How does one prove that a given L-grammar recognizes precisely a 
particular set of strings? Usually, things are set up so as to get at least 
that set; the at most forms the difficulty. For this purpose, one needs to 
know what cannot be derived in L. Now, one very useful property of 
L-derivations involves counting occurrences of basic types. We define 
the e-count (and likewise, t-count, etc.) of any type a by the following 
recursion: 

e-count (e) = 1, e-count (t) = 0; etc. 
e-count( (a, b)) = e-count ( b) - e-count (a). 

(So, one counts the number of positive occurrences of e minus that of 
the negative ones.) For instance, the determiner type (( e, t), (( e, t), t)) 
has e-count 2, t-count -l. For sequences of types A, the counts are 
obtained by adding those for their members. Now, L-derivations have 
the following invariant: 

THEOREM. If A ~ B is derivable in the calculus L, then the e-count 
(t-count, . .. ) of A equals that of B. 

The proof is by induction on the rules used in L-derivations. By way of 
contrast, note that the ordinary implication calculus I lacks this prop
erty. For instance, it can prove t ~ (e, t), as we saw, which is not valid 
in L. Note that equality of count is a necessary, not a sufficient 
condition for derivability: otherwise, all L-reduction arrows could be 
reversed. 

As a first application of this result, e.g., there is no L-justification for 
deriving adjectives (type (e, t), (e, t)) from determiners: the former have 
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e-count 0, instead of 2. Next, here is the promised application to 
questions of recognition. 

Example. Polish propositional logic. 
Consider the alphabet {p, --', 1\ j, and assign types as usual: 

pf-+t --, f-+ (t, t) 1\ f-+ (t, (t, t)). 

Evidently, all well-formed formulas will be recognized as t, already on 
the Ajdukiewicz schema alone. What the L-apparatus adds are at least 
all permutations of such formulas. But in this case, it recognizes no 
more. For, suppose that a] ... ak '* t is derivable in L, with all ai 

(1 ~ i ~ k) from among the above three types. As the conclusion t 
has t-count 1, so should the initial sequence. Now, t-count «t, t)) = 0, 
t-count «t, (t, t))) = -1. Therefore, the only admissible sequences to 
the left are those with, say, 

n occurrences of 1\ , n + 1 occurrences of p, 
and an arbitrary number of occurrences of --, . 

But then, as is easily seen (cf. Section 1004.), any such sequence is a 
permutation of some propositional formula. 

This example might suggest that using L-rules on top of a traditional 
categorial grammar will always recognize the permutation closure of the 
original language. For a counter-example, see van Benthem (1985e), 
which also presents many other results in this area. We conclude with 
the current state of affairs: 

THEOREM. All permutation closures of context-free languages have a 
recognizing L-grammar. 

CONJECTURE. The converse of the theorem holds as well. 

As a final curiosity, one can also determine the class of languages that 
would be recognized by using the full intuitionistic implication calculus 
as a system of combination. These turn out to form a small fragment of 
the regular languages: increasing power of type change does not neces
sarily improve recognizing capacity! 

In the remainder of this chapter, however, we are interested in new 
kinds of logical question generated by this type of categorial grammar, 
rather than studying 'old about new'. Evidently, the fundamental theme 
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in the above is variation of types. Now that a given sequence of expres
sions may be evaluated to different types in different ways, it becomes 
of interest to describe the resulting variety. Two main results will be 
obtained here: (1) for any sequence, the set of its possible types has at 
most three basic types, 'generating' the others; (2) for any sequence, and 
anyone of its types, there exist at most finitely many non-logically 
equivalent readings in that type. Thus, the variety induced by L has 
definite bounds - as it should. Perhaps more fundamental, however, is 
the search for some independent semantic notion of 'admissible type 
change', which can serve as a touchstone for the given syntactic rules of 
type manipulation. We shall present one relevant proposal here, and a 
completeness theorem for the calculus L with respect to this semantics. 

7.5. SEMANTICS FOR TYPE CHANGE 

In L-derivations for sequents A ~ b, there is an obvious semantic 
motivation for the individual steps. A function-elimination amounts to 
an instruction to apply a function to an argument, a function-intro
duction requires creating a new function by abstraction. More formally, 
the 'meanings' of derivations of A ~ b may be given using terms in a 
logical type-theoretical language, having an infinite supply of individual 
variables Xa, Ya' ... for each type a, and allowing the following kinds of 
term formation: 

- if t, is of type (a, b), and t2 of type a, then t,(t2) is a term of type 
b (,application'), 

- if t is of type b, and x is a variable of type a, then (Ax . t) is a 
term of type (a, b) ('lambda-abstraction'). 

This language has its obvious interpretation in hierarchies of func
tional domains, starting from domains De ('entities'), Dt ('truth values'; 
usually {O, I}), and ascending via the stipulation that D(a, b) = (Db )Da. 

To assign a lambda term to an L-derivation of A ~ b, one takes 
distinct variables xa,' ... , xan for each type occurrence in A, and 
proceeds inductively as in the following examples. 

Example (axioms). Axiom a ~ a has a term assigned xa' (Given any 
a-value, it yields the same a-value, of type a.) Axiom (a, b) a ~ b gets 
X(a, b) (Xa), of course. 

Example (longer derivations). The earlier derivation of rule G is 
treated as follows: 
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X(c, a) (Xc) 

X(a, b) , X(c, a) (Xc) X(u, b) (Xa) (substitute the relevant 

expressions for X(a, b), Xa) X(a, b) (X(C, u) (Xc » 
(AYc • X(a,b)(X(c,a)(YJ» 

This example follows the structure of proofs in the original formula
tion of the calculus L in Section 8.3. It is also possible to read off 
lambda-terms from natural deduction trees, or other related formal
isms. For instance, the two trees given for the analysis of Det N R 
structure yield, respectively, 

(i) X(p,(p,I» (x(P,P) (xp», and the non-equivalent 
(ii) AYp' X(p,(P, I» (Xp)(X(p,P) (Yp»· 

The precise procedure to be followed here will appear below. It 
will be clear already how these lambda terms act as type changers, 
expressing constructive instructions for obtaining a denotation of type 
b from given denotations oftypes al , • •. , an' 

As it stands, this type-theoretical language is too rich. Many of its 
terms do not correspond to admissible type changes in the calculus 
L. Thus, the question is to find plausible restrictions - on the way 
to a perfect match. First, lambda terms with 'vacuous abstraction' are 
to be excluded. E.g., AYe • XI corresponds to the non-derivable sequent 
t ~ (e, t). Then lambda terms with subterms ('subroutines') without 
free variables are to be excluded. E.g., x«e, e), I) (AYe • Ye) corresponds to 
the non-derivable sequent « e, e), t) ~ t. Finally, repetitions of the 
same variable occurring freely in some subterm are forbidden. E.g., it 
was observed before that (a, (b, c» does not evaluate in L to «a, b), 
(a, c» - even though there exists a lambda term (AY(a, b) • (AYa • 

X(a,(b,c»(Ya)(Y(a, b) (Ya»»' The resulting restricted class of lambda terms 
will be called A. 

Although these particular restrictions all have a certain rationale, it is 
evident that there exists a whole hierarchy of various kinds of 'lambda 
recipes', rather than one unique preferred one. And indeed, once our 
completeness result has been obtained, it may be modified at once to 
deal with other calculi. 

It now remains to connect up the L-calculus and its A -semantics: 
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THEOREM ('L = A'): A sequent aI' ... , an => b is derivable in the 
calculus L if and only if there exists a term t in A of type b with 
exactly the free variables xal ' ••• , X an • 

Proof The theorem follows from the slightly stronger claim that a 
sequent aI' ... , an => bl, . .. , bm is L-derivable iff there exist A-terms 
t l , ••• , tm , of types b l , ••• , bm , whose free variables use up X UI ' ... , 
xa in m disjoint segments. 

n 
From L to A. Rules (1), (2) have been treated already in the 

examples. Rule (3): suppose t(XUI' ... , xUn' xu) is given, of type b. Then 
the A-term (Axa . t) matches the conclusion. Rule (4): The terms for 
the conclusion are all single variables (for B, C), together with the 
already given term for A => b. Rule (5): Let A = aI' ... , an, B = bl, 
... , bm , C = c l , ... , ck . We have A-terms t l , ..• , tk using up X bl , .•• 

, Xb , as well as A-terms Sl' ... , Sm using up xal ' ••• ,xa . But then, the 
m n 

A -terms corresponding to the conclusion of the Transitivity rule are 
obtained by substituting the matching terms Si for the variables Xb 
occurring in the terms tj • It is easily checked that no A -restrictions ar~ 
violated in this process. Rule (6): there is nothing to prove. 

From A to L. The case of a single term illustrates the general 
procedure. (The following induction uses the fact that, if an application 
or abstraction term is in A, then so are its immediate components.) (i) t 
is a variable of type a: a => a is L-derivable. (ii) t is an application 
tl (tz): if L derives aI' ... , ai => (b, c) as well as ai + I , ... , an => b, 
then it also derives aI' ... , an => c, by its rules (4), (2), (5). And (iii), t 
is an abstraction (AXb . te): if L derives aI' ... , b, ... , an => c, then it 
also derives al, . .. " ... , an => (b, c), by rules (3) and (6). D 

Notice how the above proof effectively provides each eligible lambda 
term with a derivation whose meaning it is. In other words, viewing 
lambda terms as possible 'readings', constructions are provided exem
plifying each reading. The procedure in the other direction, providing 
L-derivations with readings, is effective too. 

The following general picture now emerges. At one end of the 
spectrum lies a pure application language without lambdas, whose 
terms correspond with derivations in the original Ajdukiewicz cate
gorial grammar. At the other end, there is the full abstraction/applica
tion language, whose terms may be seen to correspond precisely with 
derivations in the intuitionistic implication calculus I. (This observation 
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is known from general logic.) The Lambek calculus, and possible 
variants, lie somewhere in between. 

Still, the lambda-connection does not provide a semantics in all 
senses of the word, such as providing appealing 'pictures' for refuting 
derivability. And indeed, there are other useful formats of semantic 
description for the Lambek calculus. For instance, in another long
standing tradition, Buszkowski (1982) provides an 'algebraic semantics'. 
Here, we conclude with a somewhat different perspective on this issue. 

Constraints on Admissible Transitions 

The lambda language is a medium for recording, rather than con
straining type transitions. If we are to find additional conditions, one 
source for these is Chapter 3, with its emphasis on general categorial 
mechanisms. 

An important general structure permeating all categories was the 
implication order [;;; defined in section 3.2. Now, it seems attractive 
to demand preservation of such implications, when changing denota
tions from one category to another. Thus, an admissible lambda term 
r(xa) would have to satisfy, for all u, vin Da , 

U [;;; v only if (perhaps even: if and only if) 
[r]~a [;;; [r]~a. 

(There is some self-explanatory notation here.) 
Some of the earlier transitions have this property. An example is the 

G-form (a, b) ~ «c, a), (c, b», with lambda term 

AY(c,a) • AYe' X(a,b)(Y(e,a)(Yc»' 

Others do not. For instance, the M-form (e, t) ~ «( e, t), t), t) has an 
associated term AY«e, 1),I)Y(X(e, I)' sending sets X ~ E to the family of 
sets X+ ~ peE) containing X as an element. But there is no guarantee 
that, if XI ~ X 2, then also xt ~ Xi. 

The general principle behind these examples is that of Chapter 6. 
Only those lambda terms will guarantee preservation of [;;; whose 
occurrences of xa are syntactically positive, in the following sense: 

- xa occurs positively in Xa (but in no other variable). 
- if xa occurs positively in A, then also in A(B) (for arbitrary terms 

B), 



CATEGORIAL GRAMMAR 139 

- if xa occurs positively in A, then also in AY • A (for any variable 
Y distinct from xa). 

And this fits in with the above formulas. x(a, b) occurs positively in 
the first lambda term, whereas x(e, t) does not in the second. (Still, for 
trivial reasons - !;;;; being the identity on De - the original Montague 
rule e ~ « e, t), t) remains admissible in this sense.) Thus, preservation 
of implication is a genuine additional constraint on the calculus of type 
change. 

Remark: Through the above correspondence between lambda terms 
and derivations, this condition may also be translated into one on 
L-proofs: 

whenever Modus Ponens is applied, say with 'premises' al ••• aj ~ 
b and aj + I ... an ~ (b, c) to obtain al ••. an ~ c, all type 
occurrences aI' ... , aj should be transferred to the right-hand side 
eventually (by Conditionalization). 

Whether the above constraint is reasonable remains a matter of 
debate. E.g., in Groenendijk and Stokhof (1984), it is claimed that 
failure of preservation with M, a rule independently motivated by the 
needs of 'coordination', rather shows that one needs an L-connected 
family of types for single expressions, with some of their behaviour 
accounted for at one level (for instance, logical relations) and other 
aspects (such as combinatorial 'affinities') elsewhere. Our flexible cate
go rial grammar then provides a 'family tree' for these various types. 

Another possible constraint suggested by Section 3.3., might be to 
focus on those transitions whose associated recipe makes the lifted 
denotation a homomorphism in its new category. In general, this is a 
very restrictive condition, only fulfilled when the main argument of the 
term 'really' occurs as the head functor in its matrix. This is what 
happens in Montague's M rule M: AY(e,t) • Y(e,t)(xe)' It can also be 
observed with the transition underlying the Keenan and Faltz treatment 
of transitive verbs: 

AY«e,t),t) • AYe· Y«e,t),t)(AZe • x(e,(e,t))(ze)(Ye))' 

(The 'AZ' is only here for a minor combinatorial purpose.) 
Finally, there is a constraint which turns out to be satisfied by all 

lambda terms, and yet has a certain intuitive content. In Chapter 3, 
a special role was played by the logical items, invariant for auto
morphisms 1C induced by underlying permutations of the individual 
domain De. One obvious question is: will such a logical item in type a 
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remain logical, when lifted to a higher type by our rules? The answer is 
affirmative, and it follows from this result: 

THEOREM. For every lambda term 7:b with the free variables XI' ••• , 

Xn , every permutation 71: of the above kind, and every suitable inter
pretation function [ ], 

71:([7: ]xJ ... xn) - [7: ]XJ ... Xn 
b dJ ... dn - bJn(dJ) ... 1l(dn ) 

The proof is by induction on the complexity of the term 7:. So, if an 
item xa is invariant for such permutations 71: already, its lifted forms 
7:(xa) will be invariant too. 

7.6. DIGRESSION: POSSIBLE WORLDS SEMANTICS 

The analogy between the Lambek calculus and the intuitionistic logic I 
also suggests a more traditional semantics for L; not for its derivations, 
but for its sequents as such. An outline of this approach follows here. 
(For details, cf. van Benthem, 1985e.) 

The usual semantics for I has models 

M=(~,~, V), 

with rs a set of 'forcing conditions' or 'information pieces', ~ a partial 
order ('possible growth of information'), and V a valuation giving a 
truth value to each proposition letter at every i E ~ (with truth persist
ing along ~ -successors). 

Evaluation is as follows: 

M t= p[i] iff V; (p) = true 
M t= a -+ ,8[i] iff for allj -;;;J i, M t= a [j] only if M t= ,8[;]. 

Finally, validity for a sequent ai' ... , a nl,8 ('ai' ... , an t= ,8') means 
that, in all M, at all i E ~,if ai' ... , an hold at i, then so does ,8. A 
very straightforward Henkin completeness argument then establishes 
that always 

ai' ... , an t=,8 iff a l ... an ~,8 is derivable in I. 

The difference with L lies in one's view of the 'information pieces'. 
These are now, as it were, checks for verification, that can be cashed 
only once. This idea leads to the following new models 

M=(~,~, V); 
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where ® is now a binary operation of addition of information pieces. 
Here, ® will be required to be 

associative (i ® (j ® k) = (i ® }) ® k) and commutative (i ® } = 

} ® i); though not necessarily idempotent (i ® i = i). 
This new structure is reflected in the key clause for evaluating 

complex types: 

M 1= (a, b)[i] iff for all} E SS such that M 1= ali], M 1= b[i® fl. 
This time, no persistence clause is added for the valuation: L-types do 
not enjoy the heredity possessed by all I-formulas. Finally, semantic 
consequence becomes 

a l , • •• , al1 1= b if, for all M = (SS, ®, V) and all i l , ••• , il1 E SS, 
if M 1= adid and ... and M 1= all [i l1 ], 

then M 1= b[i l ® ... ® ill]. 

For instance, it may be checked that all inference rules of L preserve 
this notion of consequence. 

Now, the usual logical questions can be raised with respect to this 
semantics. For a start, a judicious formulation of a semantic tableau 
method may be used to establish decidabi/ity for the above notion of 
consequence. Then, to see that the latter indeed coincides with L
derivability, it is to be shown how non-L-derivability leads to counter
examples in the above models. (This is 'completeness': 'soundness' 
having been observed already.) For the latter purpose, a simple Henkin 
model suffices, with 

SS: all finite sets of formulas (viewed typographically as occurrences), 
®: union (in the sense in which, e.g., (p, q) ® (p, r) would become 

(p, q, p, r), rather than (p, q, r)) 
V; (p) = true iff i => P is L-derivable. 
By induction on the complexity of types a, a Truth Lemma can then 

be proved: 

M 1= a [i] iff i => a is L-derivable. 

As a final topic of interest, we mention the possible semantic study 
of logics 'intermediate' between L and I. For instance, various addi
tional axioms turn out to correspond to possible extra conditions on the 
operation ®. 

Example: The 'double use' principle a a, (a, b) => b will be valid if 
and only if the following form of idem potence holds: 
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i ® i ® j = i ® j, for all i, j. 

Remark: As for the general comparison of L and I, van Benthem 
(1985e) shows that L cannot be faithfully embedded in I; whereas the 
converse question is open. 

All these topics can be extended to the case where the type change 
calculus also has an operation . of concatenation (as was the case in 
Lambek's original paper). The calculus rules here will be the usual ones 
for conjunction, even though not all usual II -laws can be derived, 
owing to the general restrictions in L. The matching semantic clause 
becomes 

M 1= a . b [i] iff there exist j, k with i = j ® k such that 
M 1= a [j] and M 1= b [k]. 

Despite all these matchings, it should be admitted that the present 
semantics stays very close to syntax - and indeed, it may be closely 
related to the algebraic semantics of Buszkowski (1982). Still, the 
present models, with their 'dynamic' view of evaluation as 'consuming' 
an index i to establish the truth of a formula may have some suggestive 
value beyond the present setting. 

7.7. VARIATION IN OUTCOMES 

The present grammar is extremely generous in what it counts as 
'interpretable'. For, every sequence of types evaluates to a single 
combined type, even a whole family of them: 

a l ••• an ~ «aI' ( ... (an, b) . .. », b), for all types b. 

Nevertheless, the range of outcomes for a sequence is subject to certain 
restrictions. 

One obvious conjecture would be that the set of 'outcomes' for a 
sequence A, i.e., those types b for which A ~ b is provable, has a 
'generator': one single type b such that (i) A ~ b, and (ii) if A ~ d, 
then b ~ d, for all types d. In propositional logic, this property is 
immediate, once the language has conjunction. For the pure implication 
calculus I, however, the answer seems to be unknown. The conjecture 
fails for the Lambek calculus. 

Example: The sequence (e, t) (t, e) evaluates to both (e, e) and (t, t): 
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1 1 
e e, t t t, e 

t t, e e e, t 

e t 
-1 -1 

e, e t, t 

These two outcomes are incomparable in L (even though their e- and 
t-counts are the same). This may be shown by noting the impossibility 
of producing either implication in the special cut-free version of L 
presented at the beginning of Section 7.4. (A natural language example 
of this ambiguity might be the phrase the woman who fears that # 
runs, with a gap that is indifferently e or t.) More generally, n-cycles of 
this kind occur for all finite n. 

To return to the matter of the range of outcomes, here is the 
principle of generation. 

THEOREM. For any sequence of types a j , ••• , an, its set of outcomes 
is L-generated by the two types «a j , ( ••• (an, e) ... )), e) and 
« a j, ( ••• (an, t) ... )), t), together with at most one ofthe types e, t. 

Proof The first-mentioned two types are obviously derivable out
comes. Moreover, they ensure that all types of the form «a j , ( ••• (an, 
b) ... )), b) are available - through the following observation: «a j , 

( ... (an, b2) ••• )), b2) =} «a j , ( ••• (an, (b j , b2)) '" )), (b j , b2)) is 
L-derivable. Then, if a j , ••• , an =} (b j , b2) is derivable in L, we are 
done, since the following sequent will be L-derivable: «a j , ( ••• (an, b2) 

... )), b2) =} (b l , b2). (The argument is this: a j , ••• , an =} (b l , b2)/ 

a l , .. ·, an' b l =} b2 /b l =} (aI' ( ... (an, b2) .. • ))/«a j , ( ... (an, b2) .. • )), 

b2) b l =} b2.) Finally, it remains to add e or t, if these types actually 
occur among the outcomes. By the invariance of e-count, the two 
cannot occur together for the same sequence a I' ... , a fl' 0 

This result does not imply that the set of all types is generated by some 
'finite basis' of types. For instance, all types in the following sequence 
are mutually non-derivable in L: t, (e, t), (e, (e, t)), .... The e-count is 
different in all cases. 

In a sense, the preceding theorem merely shows that all complexity 
of outcomes is already contained in the relation =} between single 
types. Moreover, it is the 'inflated' types which do all the work. 
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Next, we tum to a second kind of variety, concerning the range of 
readings for an outcome. 

One and the same sentence may have categorial analyses with 
different meanings, as was observed before. In other words, given a 
sequence ai' ... , an and one of its outcomes b, there is still variety in 
derivations of the sequent ai' ... , an ~ b. It is usually assumed that 
only finitely many different readings can exist. For instance, the sen
tence every crook does not tell lies, when read as the type sequence 
«e, t), t)/(t, t)/(e, t), has precisely the two readings: 'not (every)' and 
'every (not),. We shall prove this expectation of finiteness, by an appeal 
to the completeness theorem of Section 7.5. In that earlier perspective, 
different derivations for a sequent ai' ... , an ~ b correspond to dif
ferent A-terms of type b, having the free variables xal ' ••• , xan' The 
question is, even if there are infinitely many of these, is their number 
finite modulo logical equivalence? For instance, there remain only two 
candidates for the above sequence; essentially: 

THEOREM. A sequence of types can have only finitely many logically 
distinct readings in any given type of outcome. 

Proof The assertion follows from the following claim about the 
corresponding logical type theory: 

Up to logical equivalence, the set of A -terms of a fixed type b, with a 
fixed finite number offree variable occurrences xa , ... ,Xa ,is finite. 

I n 
To see this, consider such terms in lambda normal form; i.e., with as 

many 'lambda-conversions' performed as possible: 

This process is admissible, as lambda conversions do not lead outside 
of the class A. This procedure restricts the occurrences of the remain
ing A-operators: they can no longer occur in contexts of the form 
(Ax' tl)(t2)' Moreover, by renaming bound variables where necessary, 
each occurrence of A may be marked by a unique variable Ya' 

LEMMA. Each occurrence AYa in a normal form corresponds to a 
unique occurrence of a as a subtype of b or a l or ... or an' 
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Then, as there are only finitely many such subtypes, our normal forms 
will be composed of just a finite stock of symbols: occurrences of AY, xa. 
and applications linking these - and hence the assertion of the theorem' 
follows. 

The proof of the lemma is by induction on the complexity of terms, 
noting that each subterm of a term in normal form is itself in normal 
form. Case 1: the term is a variable. There is nothing to be proved. 
Case 2: the term is a lambda-abstract AYb] • t', with b = (b], b2), t' of 
type b2 • Apply the inductive hypothesis to t', with respect to the types 
a], ... , an> b2. Case 3: the term is an application t](t2)' This case will be 
illustrated by an example. First, notice that t] cannot begin with a A.. 
Hence, it is either a variable or an application. In the latter case, 
consider its left-most constituent, and so on. Eventually, one finds a 
'leading variable' xa. on the left. For instance, suppose that the shape of 

I 

the term is as follows: «x(S]»(S2»(t2)' where t2 has type c, S2 has type 
c2, S1 type c] and x type aj = (c2, (c], (c, b»). Now, S], S2' t2 divide up 
the remainder of the variable occurrences xa]' ... , xUn' and the 
inductive hypothesis may now be applied to (i) t2 with respect to its 
'x-types' plus c, (ii) S2 with respect to its 'x-types' plus c], and (iii) S1 
with respect to its 'x-types' plus c2• As all these sets of types are 
disjoint, the required conclusion (for this case) follows. 0 

7.8. DISCUSSION 

The above theory revolved around one specific calculus of type change. 
But there is a need for a certain latitude in the enterprise: L certainly is 
not the final word. And indeed, most results and techniques developed 
would also work for a wider range of such systems. Here are some 
possible directions. 

To begin with, L is perhaps overly generous in its strong capacity for 
recognizing phrase structures. Therefore, various constraints may be 
needed to decrease its tolerance of permutations. And of course, 
directional variants ought to be studied in any case. Nevertheless, it 
should be noted that two strategies may be discerned among linguists 
working in this area. One is to keep the calculus as weak as possible, 
adding rules only when forced by the facts of syntax. Another is to keep 
the calculus strong but simple, adding filters afterwards to account 
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for syntactic peculiarities of specific natural languages. (cf. Flynn, 
1983). 

On the other hand, there are also type transitions which L does not 
capture yet. One urgent example is that of conjunction, with basic 
sentential type (t, (t, t)), which ought to be raised to predicate con
junction (e, t), (( e, t), (e, t)). But, no such L-derivation is possible: the 
e-counts do not match. What is needed here is a certain amount of 
'recycling' of types, using the same type e twice. But perhaps, another 
line of approach is preferable here. The conjunction and is one of a 
class of lexical items which do not fit the uniform functional mould 
(a, b) too well: they are coordinators, not subordinators. So, it might be 
better to admit binary types as well, such as, say, (t, t; t) for conjunc
tion, and extend the calculus L in some appropriate fashion. Alterna
tively, a binary 'type-coordinator' might be added to our calculus, 
forming sequences of 'parallel' arguments. 

Various other arguments have been advanced for considering 
strengthenings of the calculus L, relaxing its structural rules (see Bach 
et al. (eds.), 1986). Further interesting questions arise from the inter
play of slashes \, /, neglected in this chapter. For instance, which 
theoretically possible 'dualities' between these two directions are 
observable in natural language? 

Then also, more substantial 'mathematical' type transitions were 
studied in Section 3.3. As was observed there already, these seem to 
involve a lambda/application language having identity as well. Is there 
still an L-like system in this area? Even so, there are many 
semantic family resemblances across types which are not captured by 
the above approach at all, such as that between verbs and their 
participles or nominalized forms. But that is another story. 

Finally, type change is just one instance of what might be called a 
broad 'semantic mechanism', operative in natural language. Other 
examples are inference, manipulating temporal or modal perspective, 
etc. Such mechanisms can interact, witness the earlier points of contact 
between type change and inference (Sections 6.2., 7.5.). These interac
tions can themselves be studied systematically. For instance, van 
Benthem (1986a) presents a Lambek calculus with systematic mono
tonicity marking, which describes the changing inferential behaviour 
of expressions, when given different categorial construals. Another 
general interaction of this kind is the interplay of type change and 
intensionalization, studied in Section 7.9. below. Thus, natural language 
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is more than a sum of expressions, or production rules. There is higher
order structure too, which deserves semantic attention - both within 
and across human languages. 

7.9. APPENDIX: INTENSIONAL TYPE CHANGE 

One attraction of a flexible categorial grammar is its perspicuity. The 
interplay of simple basic type assignments with simple rules for type 
change produces complex higher type behaviour which other theories, 
such as Montague's, have to spell out in formidable detail. For instance, 
it has been pointed out in Partee and Rooth (1983) how Montague's 
'inflexible' approach forces him to assign words to 'worst case cate
gories', representing the most complex environments they might find 
themselves in (where we have given 'best case' analyses, plus a set of 
rules for coping with adversity). 

There remains another, independent source of complexity in Monta
govian type assignments, being an 'intensionalization', providing expres
sions with complex intensional types, which may be needed when they 
find themselves in opaque contexts. The most convenient categorial 
setting here is just a type theory with three basic types: e, t as well as s 
(,possible worlds', or 'indices'). For instance, intransitive verbs already 
get type «s, e), t) with Montague: they denote properties of 'individual 
concepts' (type (s, e» rather than of bare individuals. Again, 
Montague's general mechanism injects an over-dose of types s, 'just in 
case'. Can we devise a simpler scheme, inspired by the above? 

First, there is an entirely reasonable point of view that might justify, 
at least, the rule 

change t into (s, t). 

Consider the earlier extensional e, t-grammar. Objects of type e were 
to be entities. What about those of type t? Intuitively, one thinks here of 
some set of 'propositions (rather than the bare truth value domain 
{O, 1}). Moreover, the latter come as an ordered structure, with a 
relation of implication, perhaps even a full Boolean Algebra. (As a 
matter of natural language, this see~s a very mild assumption.) But 
then, it is well known that every such algebra can be represented as an 
algebra of subsets of some carrier set S of ultrafilters (or 'maximal state 
descriptions'). This then will be our base domain Ds; with Dt = {O, 1} 
arising as a means of classifying subsets by their characteristic func-
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tions. (Alternatively, thoroughly Boolean-minded semanticists, such as 
Keenan and Faltz (1985), might think of this move as making the whole 
semantics 'Boolean-valued' rather than 'two-valued'.) Propositions will 
now correspond to sets of possible worlds, in the Leibnizian sense, and 
hence we baptize the above principle the Leibniz Rule. 

There is more to the above construction of possible worlds than has 
been stated. For instance, once upon this road, we will also have to 
reconsider some other basic types, notably, that of properties « e, t)). 
Recent philosophical research has tended to take individuals, proposi
tions and properties (unary, binary and higher) as primitive entities (cf. 
Bealer, 1983). So, perhaps, properties should become an intensional 
base type too. (The earlier notation p (= (e, t)) in fact suggested this.) 
Note, however, that the above move already assigns properties type 
(e, (s, t)) - or equivalently, (s, (e, t)): i.e., extensions of properties-old
style across all possible worlds. In that, there is already a lot of 
intensionality. 

Should individuals be raised in type too? No very convincing argu
ments have been advanced for the transition from e to (s, e). For 
instance, the common claim that this is needed with terms such as the 
president lacks force. The latter have NP-type « e, t), t) already on 
the old approach - and hence can be given new types «e, t), (s, t)) 
(= (s, «e, t), t))), or even «e, (s, t)), (s, t)) (= (s, «s, (e, t)), t))). There 
is enough intensional padding here to go a long way. 

In fact, so much intensionality is generated by our simple rule that 
the opposite worry might arise. Certain expressions, such as the 
Boolean connectives, do not really seem to be affected by these 
intensionalizations at all. For instance, predicate negation will still be 
defined 'pointwise', descending to specific indices and using the old 
extensional version: notint = AP . As notext (P(s)). This is another 
ubiquitous feature in the Montagovian tradition. In many semantic 
value clauses, several layers of intensionality have to be unpacked, to 
operate at lower, essentially extensional levels. One interesting question 
then is the following. Exactly when can a function A from (s, (e, t)) to 
(s, (e, t)) be represented by a function A * from (e, t) to (e, t), in the 
sense that A(P)(s) = A* 0 pes) (where '0' denotes composition)? One 
direct answer is this: 

'if and only if, for all P, Q, and all x, yES, if P(x) = Q(y), 
then A(P) (x) = A(Q)(y),. 
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Strong indifference principles such as this are likely to hold for many 
expressions - notably determiners - which pay only nominal alle
giance to intensionality. 

On the other hand, the Leibniz Rule alone does not suffice for 
handling all of Montague's legitimate intensional concerns. In particular, 
the familiar case of intensional seek remains problematic. Seek (a 
unicorn) has extensional component surface types (e, (e, I)) « e, I), I); 
which may be intensionalized to, say, (s, (e, (e, I))) (s, «e, I), I)). We 
want to combine these two to get type (presumably) (s, (e, I)). We have 
before us the behaviour of seek and a unicorn across all possible 
worlds. Now, if the basic idea of possible worlds semantics is to have 
any illuminating power at all, one should try to explain the meaning of 
the combined intensional expression by making genuine use of these 
'multiple extensions'. Say, someone seeks a unicorn intensionally if she 
seeks one extensionally in all of her belief worlds. By contrast, the 
Montagovian intensional types assigned in this situation seem to be 
motivated only by the mechanics of blocking undesired 'extensional' 
inferences. 

Still, the problem is that (s, (e, (e, I))) and (s, «e, I), I)) do not 
combine naturally to (s, (e, I)). One possible solution here might seem 
to follow from an earlier-mentioned liberalization of the Lambek 
calculus, so as to allow multiple uses of premises. But, this only returns 
the usual extensional reading 'locally' at the world of evaluation. What 
is needed instead, in line with the above intuitive proposal, is to 
combine (s, (e, (e, I))) and (s, «e, I), I)) directly into (s, (e, t)), giving 
the intension of extensionally seeking a unicorn. The general categorial 
principle here seems to be the following transition: 

One might call this Frege's Rule, honoring this well-known policy of 
employing full intensional reference in opaque contexts. Its meaning 
cannot be a simple lambda-recipe, however - given the preceding 
discussion - and perhaps, no general explication is possible here, 
covering all types of intensionalization. 

A more systematic approach to these matters is proposed in van 
Benthem (1986b). Here are a few relevant points. 

(1) The above Leibniz Rule may be compared directly with Monta
govian modes of intensionalization. For instance, transform any exten-
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sional type a into an intensional version I(a) by making the following 
replacement throughout: 

t 1--+ (s, t), e 1--+ (s, e). 

Then I(a) is equivalent to a type (s, M(a», where M is defined by the 
well-known PTQ-recursion: 

M(e) = e, M(t) = t, M(a, b) = «s, M(a», M(b». 

(2) Such global intensionalizations do not affect earlier possibilities 
of categorial combination: intensionality produces no syntactic con
straints. For, the following implication is provable: 

if a l , ••• , an '*L b, then I(a l ), ••• , I(an)'*L I(b). 

(3) Nevertheless, there may be good descriptive reasons for a 'mixed 
strategy', as some items remain extensional in meaning (such as the 
earlier 'not'), whereas others really exploit their intensional freedom 
(such as the conditional 'if'; cf. Chapter 4). This still leaves room for 
categorial combination between the two kinds of item, as extensional 
types can intensionalize to some extent already via the Lambek rules. 
Notably, 'not' can go from type (t, t) to type (s, t), (s, t), with a 
corresponding lambda-recipe which is precisely the explication pre
sented earlier! One general issue then becomes to define generally when 
an expression of some intensional type is 'really' extensional, generaliz
ing the earlier criterion for extensional operations on unary predicates. 

(4) Finally, the interaction between intensionalization and changing 
potential for inference remains to be explored in more detail - recon
sidering some of Montague's decisions. It certainly seems possible to 
retain monotonicity inference in this area, provided that the data of 
'inclusion' are now given in a suitably strong intensional sense, across 
worlds. 
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SEMANTIC AUTOMATA 

An attractive, but never very central idea in modern semantics has been 
to regard linguistic expressions as denoting certain 'procedures' per
formed within models for the language. For instance, truth tables for 
propositional connectives may be viewed as computational instructions 
for finding truth values. Another example is the proposal in Suppes 
(1982) to correlate certain adjectives with procedures for locating an 
individual in some underlying comparative order. And finally, the 
frequent proposals in a more computer-oriented setting for translating 
from natural language into programming languages are congenial too. 
In this chapter, this perspective will be applied to determiners, or more 
in particular, quantifier expressions. 

In order to correlate quantifiers with procedures, the earlier general
ized quantifier perspective will be used. As in Chapter 2, a quantifier 
denotes a functor Q£AB assigning, to each universe E, a binary relation 
among its subsets. Viewed procedurally, the quantifier has to decide 
which truth value to give, when presented with an enumeration of the 
individuals in E marked for their (non-)membership of A and B. 
Equivalently, the quantifier has to recognize a 'language' of admissible 
sequences in a 4-symbol alphabet (as there are four distinct types of A, 
B-behaviour). But then, we have arrived at the familiar perspective of 
mathematical linguistics and automata theory. 

This observation turns out to be more than a formal perspectival 
trick. We shall find surprising connections. In particular, the Chomsky 
Hierarchy turns out to make eminent semantic sense, both in its coarse 
and its fine structure. For instance, the borderline regular/context-free 
is connected with that between first-order and higher-order definability. 
But also, within these broad classes, machine line structure is correlated 
with a significant semantic hierarchy. Thus, what is often regarded as 
the main formal stronghold of pure syntax, can also be enlisted in the 
service of semantics. 

Another motive for this study comes from within the preceding 
theory. Especially in Section 2.4., the idea was mentioned to view 
quantifiers as procedures, to obtain a better insight into their hierarchy 
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of complexity. Nevertheless, there, another road was pursued, in terms 
of 'uniformity' constraints on truth value patterns for quantifiers. The 
present perspective provides the latter with a perhaps more solid and 
convincing background. 

Evidently, quantifiers form one very special type of linguistic expres
sion. But, as in Chapter 3, extension of notions and results is often 
possible to other, sometimes even all categories. Usually, such exten
sions require sensitivity to further model-theoretic structure than mere 
feature lists (as in the above). We shall introduce 'graph automata' for 
this purpose later on, when IOQking at conditionals and adjectives. This 
further step is similar to the move in contemporary mathematical 
linguistics toward 'tree automata', recognizing more structured syntactic 
objects than flat linear sequences. 

There are some interesting general aspects to procedural semantics. 
Notably, the denotations studied here are 'intensional', in the sense that 
one and the same input/output behaviour for a quantifier may be 
produced by widely different automata. But also, this functional view of 
denotations (in the pre-Cantorian sense) still has obvious links with our 
earlier type-theoretical system (Chapters 3, 7). Such general issues will 
be discussed in the final section below. 

Finally, the procedural perspective may also be viewed as a way of 
extending contemporary concerns in 'computational linguistics' to the 
area of semantics as well. Complexity and computability, with their 
background questions of recognition and learning, seem just as relevant 
to semantic understanding as they are to syntactic parsing. 

8.1. QUANTIFIERS AND AUTOMATA 

The action of a quantifier Q may be viewed as follows. For any pair of 
arguments A, B, it is fed a list of members of A, which can be tested 
one by one for membership of B. At each stage, Q is to be ready to 
state whether it accepts or rejects the sequence just read. In its simplest 
mathematical formulation, then, Q is just presented with finite se
quences of zeroes and ones (standing for cases in A - B and A n B, 
respectively), of which it has to recognize those for which the couple 
'number of zeroes, number of ones' belongs to Q in the sense of 
Chapter 2. In other words, Q corresponds to a language on the 
alphabet {O, 1}. Moreover, its language is a rather special one, in that 
different enumerations of the argument set would not have affected 
acceptance: quantifier languages are permutation-closed. (Compare the 
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similar phenomenon with the Lambek languages of Chapter 7.) Even
tually, of course, the potential dependence on order of presentation 
may be put to good use in describing certain more contextual, or 
pragmatic expressions. For instance, the quantifier every other may be 
presentation-dependent in this sense (cf. Lobner, 1984). 

Actually, the following discussion could also be couched in terms of 
a four-element alphabet, enumerating universes E with the four labels 
A - B, A (') B, B - A and E - (A U B). But here, the two additional 
symbols would remain 'inert', only encumbering notation. Moreover, 
there are mathematical differences between languages with a two
element alphabet and more complex ones, that will be exploited to 
good effect below. For the relevant mathematical theory, here and 
elsewhere, the reader is referred to Ginsburg (1966), Hopcroft and 
Ullman (1979). 

Now, one of the main themes in mathematical linguistics is the 
interplay between the notion of a language and its description by means 
of accepting (or generating) automata. And indeed, the familiar quanti
fiers tum out to be computable by means of well-known automata. 

EXAMPLE. The quantifier all is recognized by the finite state machine 
of Figure 27. 

Fig. 27. 

Here and henceforth, the starting state is the left-most one. Also, U 
is an accepting state. The automaton accepts only strings of 1 's; i.e., 
those cases where all A -objects are concentrated in A (') B. (Alterna
tively, it suffices to present the all language in Kleene regular set 
notation: 1*.) Similar two-state finite state machines will compute the 
remaining quantifiers in the Square of Opposition. 

Other quantifiers may lead beyond regular languages and finite state 
machines: 

EXAMPLE. The quantifier most is not recognized by any finite state 
machine. (This follows from the Pumping Lemma for regular languages. 
Cf. Hopcroft and Ullman, 1979.) Its language is context-free, however 
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- and so it can be recognized by a push-down automaton. The idea of 
the latter is simply to store values read, crossing out complementary 
pairs 0, 1 or 1, 0 of top stack symbol and symbol read, as they occur. 
When the string has been read, the stack should contain symbols 1 
only. (Actually, the recipe does not quite fit the usual format of a 
push-down automaton. But such subtleties are postponed until Section 
8.3.) 

Thus, higher-order quantifiers may induce context-free languages. 
Interestingly, it is not all that easy to advance beyond this stage, finding 
non-contrived natural language quantifiers whose associated procedure 
would be essentially of the complexity of some Turing machine. One 
(not uncontroversial) example is (relatively) many, in the sense of 
Section 1.2. This case will be considered in somewhat more detail in 
Section 8.3. But on the whole, one finds natural language quantifiers, 
even the higher-order ones, within the context-free realm. Thus, they 
are essentially 'additive', in a logical sense to be explained below. There 
is some foundational significance to this observation, as additive 
arithmetic is still an axiomatizable (indeed, decidable) fragment of 
mathematics. The 'Godel Border' of non-axiomatizability only arises in 
the next step, when adding multiplication to the system (cf. Mendelson, 
1964). So, natural language shows a wise restraint in these matters. 

8.2. FIRST-ORDER QUANTIFIERS AND FINITE STATE MACHINES 

Definability 

The examples in the preceding section motivate an obvious conjecture; 
which turns out to be justified: 

THEOREM. All first-order definable quantifiers are computable by 
means of finite state machines. 

Proof Recall the tree pattern for first-order quantifiers described in 
Section 2.5. It consists of some arbitrary finite top triangle, followed by 
a 'Fralsse threshold' at level 2N. Now, the theorem is proved if the 
associated language can be shown to be regular. 

The first top triangle declares some fixed finite set of sequences to 
be in Q; and all the corresponding singleton sets are of course regular. 
Then, the Fraisse row adds a finite number of accepted patterns, of (at 
most) the following three types: 
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- exactly i occurrences of 1, at leastj occurrences of 0, 
- at least i occurrences of 1, at least j occurrences of 0, 
- at least i occurrences of 1, exactly j occurrences of O. 

It remains to be checked that the latter types of language are indeed 
regular. 

An example will make this clear. 'Exactly two I-s, at least five O-s' 
may be described as follows in Kleene notation. Take all (finitely many) 
possible distributions of five O's over three slots formed by two 1 
boundaries, and then 'fill up' with suitable iterations 0* wherever 
possible. 0 

Through this connection, existing results about finite state machines 
become available for first-order quantifiers, given by their definitions. 
For instance, it follows that, for any two such quantifiers, the question 
is decidable if they are equivalent. 

Given the simple nature of finite state automata, a converse of the 
above theorem seems likely. But, there are obstacles. 

EXAMPLE. The automaton of Figure 28 recognizes the (non-first
order) quantifier an even number of. 

oo ... ----~oo 
u 

Fig. 28. 

Again, U is an accepting state. 

Thus, an additional restriction is needed to filter out the procedures 
corresponding to logically elementary quantifiers among all finite state 
machines. And in fact, the earlier examples suggest the following 
distinction. The machine graph for an even number of has a non-trivial 
loop between two states: something which did not occur with all, some, 
etcetera. Let us call a finite state machine acyclic if it contains no loops 
connecting two or more states. This notation has an independent 
motivation as well. The central concept in the monograph McNaughton 
and Papert (1971) is that of a testable regular language, being a simple 
construct out of languages recognized by 'counter-free' automata. The 
following result is in van Benthem (1985d): 
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the testable regular languages are precisely those having an 
acyclic finite state recognizer. 

Moreover, a condition is needed reflecting the earlier-mentioned 
permutation closure of our associated quantifier languages. A machine 
graph will be called permutation-invariant if the possibility of traveling 
from state U to state V by means of some sequence consisting of O's 
and 1 's implies that any permutation of that sequence will also force the 
passage from U to V. Note that the given automata for all and an even 
number of both had this property. Evidently, such automata recognize 
only permutation-closed languages. A converse will be proved later on 
in this section. 

Evidently, permutation closure is a strong restriction on classes of 
languages. It should be kept in mind, however, that we can always 
decide to drop it, when studying more involved linguistic constructions. 
On the other hand, the restriction is a mathematically interesting one. 
Contrary to initial expectations, it does not seem to collapse the general 
theory of automata and languages; leading rather to new versions of old 
questions. Some examples will appear in what follows. 

As an illustration of the above two conditions, it may be observed 
that permutation-invariant and acyclic finite state machines are 'con
vergent': all non-trivial continuing paths end eventually in one single 
absorbing state. This fact will be significant (although it is not actually 
used) in the proof of the following result. 

THEOREM. The first-order definable quantifiers are precisely those 
which can be recognized by permutation-invariant acyclic finite state 
machines. 

Proof First, a closer look is required now into the automata 
associated with first-order quantifiers. Interestingly, the Tree of Num
bers (Section 2.2.) now proves to be computationally significant too. 

Let Q be a first-order quantifier in the tree, with its Fralsse pattern. 
Now, interpret this tree structure itself as a graph for a machine MQ 
with infinitely many states corresponding to the tree nodes. Its starting 
state is (0, 0). The transition arrows for reading a zero go from states 
(a, b) to (a + 1, b), those for reading a one from (a, b) to (a, b + 1). 
Finally, the accepting states will be those in Q. 

CLAIM. M Q accepts a finite sequence s if and only if the couple 
O(s), 1(s) = number of zeroes in s, number of ones in s, belongs to Q. 
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Proof By induction on the length of sequences s, it may be shown 
that reading s will take MQ from its starting state to the state O(s), l(s). 
The assertion then follows. D 

Now, with a first-order pattern for Q, this infinite machine accepting 
device may be reduced to an equivalent finite state machine. Recall the 
earlier Fralsse threshold, at level 2N. Above it, the state graph remains 
as before; on it, one concludes with Figure 29. 

0 2N.0 2N-1.1 

·----+O·~ o 1 1 

o 

• •• 
N.N 

--+. +--1000 

o 1 

Fig. 29. 

• •• 
1.2N-1 O.2b 

+----c::u· +-- • o 0 1 

1 

It is easy to check that this modified machine still accepts the same 
language. 

Finally, inspection shows that machine graphs of the latter kind are 
both acyclic and permutation-invariant. This concludes the first half of 
the argument. 

The converse direction of the theorem follows from the inductive 
character of acyclic finite state machines. In such automata, for any 
accepting state, there is only a finite number of types of path leading to it 
(from the starting state), driven by successive transitions of the four 
types 0, 1, 0* or 1*. Thus, such states accept sequences of essentially 
the following forms: 

exactly i lIexactly j 0, exactly i lIat leastj 0, 
at least i lIat least j 0, at least i l/exactly j O. 

Now, all these types by themselves are first-order definable - and 
hence so is their disjunction (which is the 'yield' of the accepting state 
considered). Finally, the whole machine itself again accepts the dis
junction of everything admitted in its individual accepting states. D 

Some further illustrations of this method may be obtained by com
paring 'tree-based' automata for first-order quantifiers with those found 
ad hoc. For instance, the tree approach for all would give a 3-state 
automaton, which may be simplified to the earlier 2-state one. Con-
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versely, given automata for first-order quantifiers may be 'normalized' 
into a tree-like shape. 

The above theorem can be generalized to the more general class of 
merely quantitative quantifiers (not necessarily obeying CONS). The 
same notion of first-order definability may be employed then, but there 
is a four-letter alphabet, as explained above. 

Finally, the question remains to describe the class of all quantifiers 
computed by finite state automata. Our conjecture is that these are all 
definable in a first-order language augmented with suitable 'periodicity 
quantifiers', such as a k-multiple number of. (For related definability 
results, and a first significant use of finite automata in logic, see Buchi, 
1960.) 

Fine-Structure 

In addition to global definability questions, matters of finer detail are 
relevant too in the study of actual quantifiers. For instance, one partic
ularly important case is that where the states correspond directly to 
semantic truth values. In the present setting, this leaves only finite state 
machines having two states, one accepting, the other rejecting. 

THEOREM. The permutation-closed languages or quantifiers recog
nized by finite two-state automata are the following: all, some, no, not 
all / an even number oj, an odd number oj, all but an even number 
oj, all but an odd number of, together with the extreme cases empty 
sequence only, non-empty sequences only, sequences of odd length, 
sequences of even length. 

Proof. By brute force; enumerating all eligible automata. 0 

This enumeration result is reminiscent of earlier ones in Section 2.4. 
For instance, one Uniformity condition stated that a truth value change 
under the influence of a transition (a, b) to (a + 1, b) or (a, b + 1) will 
be the same throughout the tree of numbers. But, this amounts to 
sanctioning operating with one 'true' and one 'false' state, with fixed 
responses for their departing zero and one transition arrows. 

Additional states may be needed for quantifiers of higher complexity. 

EXAMPLE. (Precisely) one can be recognized by an automaton with 
three states; but no less. 

Of course, all quantifiers mentioned can also be correlated with 
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machines having large numbers of additional states. Thus, there is an 
issue of minimal representation; as in the well-known Nerode Theorem, 
representing input/output functions in terms of state transition ma
chines. In fact, the Nerode representation method could be applied to 
first-order quantifier languages too. 

EXAMPLE. Consider the class ONE of sequences with exactly one oc
currence of 1. The crucial Nerode equivalence relation is the following: 

slEs2 if, for all sequences s, sl-followed-by-s is in ONE iff 
s2-followed-by-s is in ONE. 

Its equivalence classes are the following three: sequences with no, one 
or at least two occurrences of 1. These will then be the states in the 
minimal representation, with the transition function defined by the 
stipulation that 

equivalence class of s, read symbol x ~ equivalence class of 
s-followed-by-x. 

The outcome is the automaton of the previous example. 

As an application of this technique, the converse may be proved of an 
earlier observation. For any permutation-closed regular language, its 
Nerode recognizer will be 'permutation-invariant' in the sense of the 
characterization theorem for first-order quantifiers. 

Infinite Models 

When infinite models are considered, matters become less perspicuous. 
Of course, the earlier machines can operate on infinite sequences just as 
well as on finite ones - but, the problem is to find a well-motivated 
convention for acceptance, given a non-ending sequence of states 
traversed. 

One possibility is to admit only those infinite sequences which cause 
the machine to remain in some accepting state after a finite number of 
steps. By inspection of the earlier Fra"isse recognizers, it may be seen 
that all first-order definable quantifiers are recognized in this way. But 
also, certain genuinely infinitary cases are admitted. 

EXAMPLE. The following two-state machine recognizes the quantifier 
almost all, in the sense of 'with at most finitely many exceptions' (see 
Figure 30). 
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Fig. 30. 

Here, U is an accepting state. Note that this machine is not permuta
tion-invariant - although its infinite language is permutation-closed. 

Another essentially infinite quantifier of this kind is virtually no, in the 
sense of 'only finitely many'. Indeed, it would be of interest to chart the 
effects of all our earlier two-state machines here. 

What distinguishes the first-order quantifiers from the infinitary cases 
is that their rejection is also finitary: non-acceptable sequences lead the 
machine to some stable non-accepting state after a finite number of 
steps. We conjecture that, on the sets of countably infinite sequences, 
the first-order quantifiers are precisely those with a finitary acceptance 
and rejection behaviour. 

Further relaxations of the acceptance convention are possible, such 
as allowing recurring cycles of accepting states - or even recognizing 
by certain infinite patterns. Clearly, the 'yield' of our machine classes 
will be rather sensitive to such stipulations. A deeper investigation of 
these phenomena must be left to another occasion. 

8.3. HIGHER-ORDER QUANTIFIERS AND PUSH-DOWN 

AUTOMATA 

With higher-order quantifiers, finite state machines usually become 
insufficient as computing devices - and the next level in the machine 
hierarchy is needed, that of push-down automata, handling a stack in 
addition to changing state when reading new input. The usual definition 
of these machines is rather restricted: the transition function takes only 
the top stack symbol into account, recognition is by empty stack only. 
However, by a suitable re-encoding of instructions, it may be assumed 
that the machine can keep track of a fixed finite top part of the stack, 
with a final read-off convention performing a finite state machine check 
on the stack contents. One way of simulating these effects in the 
orthodox format is by having new states q, (q, SI), ... , (q, SI' ... , Sk) 

encoding tuples of old states q with up to k top stack positions. Then, 
suitable E-moves are to allow a trade-off between encoded sequence 
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and top stack symbols displayed. Finally, another set of E-moves will 
allow us to carry out the finite state machine instructions without 
consuming any more input. 

For instance, the earlier-mentioned quantifier most would have an 
awkward corresponding automaton in the original sense, whereas it has 
an easy intuitive one in this more liberal version. Significantly, though, 
writing a context-free grammar for the most-language is not an entirely 
trivial exercise. 

Before passing on to further examples, some general remarks should 
be made on push-down automata. First, the present discussion is 
couched in terms of non-deterministic machines of this kind. Deter
ministic push-down automata recognize a smaller class of languages, 
less natural than the context-free ones. Incidentally, the examples from 
the literature for this non-inclusion all lack permutation-closure. But, 
certain disjunctively defined quantifiers in our sense would seem to be 
examples also. Even so, most basic quantifiers considered here are 
'deterministic' in an intuitive sense - and so, other types of automaton 
may be relevant too. 

Recognition of sequences is made by inspection of stack content. 
One could also pursue the analogy with the finite state machine case, 
recognizing by designated state: an equivalent procedure, in general. 
Either way, the earlier parallel between machine states and semantic 
truth values becomes less direct. 

Besides most, other prominent higher-order quantifiers in natural 
language are almost all, many, few, hardly any, etc. Evidently, the 
meaning of these expressions is underdetermined - as is the case, 
indeed, with most itself. To get an impression of their complexity in the 
present terms, then, reasonable formal 'explications' are to be con
sidered. The following seem fair approximations of their spirit: 

many: 'at least one third', almost all: 'at least nine-tenths'. Thus, on 
this type of reading, the above quantifiers all express proportionality. 

Now, the complexity of the latter phenomenon is essentially context
free. A simple illustration is the following. 

EXAMPLE. A push-down automaton recognizing at least two-thirds 
will operate as follows. It keeps track of two top stack positions, 
checking with the next symbol read. In case it encounters a symbol 1, 
with 1, 0 occurring on top (in any order), it erases the latter two, and 
continues. Likewise, with a symbol 0 read and two symbols 1 on top. In 
all other cases, the symbol read is simply stored on top of the stack. At 
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the end of the process, the machine checks if the stack contains 
symbols 1 only: only then does it recognize the sequence just read. 

This automaton recognizes the right strings - by a simple com
binatorial argument. A similar procedure, somewhat more involved, will 
recognize almost all. The case of many is instructive too. 

EXAMPLE. At least one-third may be recognized by a more curious 
automaton in the above spirit. The machine now keeps track of three 
top stack positions, having the following (non-deterministic) instruc
tions. Symbols read may be pushed onto the stack. But also, the follow
ing E -moves are allowed (without consuming input): combinations of 
two O/one 1, one O/one 1, or one 1 only, may be erased from the stack. 
This time, final recognition is simply by empty stack. 

The arithmetical idea behind this procedure is that all couples (a, b) 
with a ~ 2b are generated, starting from (0, 0), by means of the follow
ing operations: add (2, l)/add (1, 1)1 add (0,1). Obviously, if a string is 
accepted by the above machine, its 'occurrence couple' (number of 
zeroes, number of ones) has such an arithmetical form. Conversely, if a 
string has an occurrence couple a, b of the form x(2, 1) + y(l, 1) + 
z(O, 1), then a judicious process of reading and erasing will produce an 
empty stack in the end. (A more general procedure in this vein will be 
stated in the proof of the main theorem below.) 

Many other examples can be analyzed in the same way. We shall now 
investigate the situation from a higher logical standpoint. 

Arithmetical Definability 

When viewed arithmetically, the above quantifiers all express extremely 
simple conditions on the two variables a (number of zeroes) and b 
(number of ones). For instance, all: a = Olsome: b I' Olone: a = 1 
Imost: a < bl'many': a ~ b + b. Thus, simple first-order quantifiers 
employ just a, b, fixed natural numbers and identity, others add 'smaller 
than', and eventually, addition is needed. These were atomic cases; but, 
e.g., the earlier an even number of would require a quantified formula: 
3x b = x + x. In fact, once arbitrary first-order conditions on a, b 
involving + are considered, the notion < becomes definable, and 
hence so are all specific natural numbers n. Thus, we are dealing with 
first-order formulas qJ (=, +, a, b), interpreted as standard arithmetical 
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statements. Now, we shall derive a general characterization of the 
present area of complexity. 

But first, one natural preliminary notion to consider is first-order 
arithmetical definability in =, 0 and 5 (successor) only. It is easy to see 
that all first-order definable quantifiers (in the sense of Section 2.5.) are 
definable here already. (For instance, at least two becomes: b 'i- 0 /\ 
b 'i- 50.) The converse fails, however. E.g., the arithmetical formula 
a = b defines exactly one half, which is not even recognizable by a fi
nite state machine. But also, not every finite state quantifier is definable 
here: witness the earlier an even number of. In this light, the better 
behaviour of additive arithmetical definability, to be studied now, is the 
more surprising. 

Here are some preliminary notions and results. First, there is the 
fundamental Parikh Theorem, stating that each context-free language L, 
in alphabet aI' ... , ak, say, induces a semi-linear set of k-tuples of 
natural numbers 

{(number of symbols al in s, ... , number of symbols ak in s) 
I all sequences s in L } . 

Here, a 'semi-linear' set of k-tuples is a finite union of linear sets, 
consisting of all k-tuples produced by a schema of the following form: 

(m}> . .. , md + xl(mll , • .. , m lk ) + ... + xn(mnl ,· .. , mnk); 

with Xl' ... ,xn non-negative integers. 
All semi-linear sets correspond to first-order additively definable 

k-ary relations on the natural numbers - as the given arithmetical 
schema can be written out in first-order terms. E.g., (1, 2) + x(O, 1) + 
y(2, 2) would become 3xy(a = 1 + Y + Y /\ b = 2 + x + Y + y). 
Hence, a first conclusion may be drawn: 

THEOREM. Every quantifier computable by a push-down automaton 
is first-order additively definable. 

Proof The set of 'Parikh couples' for the (context-free) language of 
the quantifier is semi-linear, and hence definable in the required sense. 
Moreover, the language being permutation-closed, the latter definition 
fits it exactly. 0 

In general, however, Parikh's Theorem cannot be converted, not even 
for permutation-closed languages. A standard counter-example on a 
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3-symbol alphabet is the following non-context-free set 'all sequences 
with equal numbers of occurrences of the three symbols'. The corre
sponding arithmetical predicate is obviously semi-linear; but, the lan
guage is not context-free. (When intersected with the regular (abc)*, it 
produces the well-known counterexample anbncn.) 

Fortunately, the present binary alphabet admits of a more interesting 
conclusion. (That such restrictions may produce strong effects is not 
unknown: compare the theorem that, on a I-symbol alphabet, every 
context-free language is already regular.) First, observe that all previous 
examples were semi-linear. This was indicated already for the case at 
least one third, being (0, 0) + x(O, 1) + y(l, 1) + z(2, 1). But also, e.g., 
at least two-thirds has such a form: (0, 0) + x(O, 1) + y(l, 2). The latter 
is the simpler one; a difference which showed up already in their 
respective automata. 

To proceed more generally, a result is now needed from Ginsburg 
and Spanier (1966), who proved that all first-order additively definable 
predicates are semi-linear. Their idea was to use Presburger's early 
description of these predicates (ct. Mendelson, 1964, pp. 116/7). By 
the method of 'quantifier elimination', the additive predicates turn out 
to be equivalent to all Boolean combinations of 'atomic' formulas 

Here, t1, t2 are terms involving individual variables, 0, Sand +. Now, 
all such Presburger normal forms can be shown to be semi-linear. (This 
is not trivial. For instance, it is not obvious that the intersection of two 
semi-linear sets is again semi-linear.) 

Thus, first-order additive predicates correspond to semi-linear sets 
- and it remains to find suitable automata for the latter, generalizing 
the earlier examples. In view of earlier observations, the restriction to a 
2-symbol alphabet must play some essential role here. 

THEOREM. Every first-order additively definable quantifier is com
putable by a push-down automaton. 

Proof In view of the above, if suffices to find an accepting push
down automaton for every language having a semi-linear set of occur
rence couples. The following construction is due to Stan Peters and Bill 
Marsh. 

First, attention may be restricted to linear predicates, as finite unions 
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of context-free languages are themselves context-free. Thus, suppose 
our predicate has the form 

Let N be the maximum of all natural numbers m i , m ij involved. Our 
automaton will have 2( N.N) states, being all couples of the forms 

(i, j), (i, j)* (1 ~ i, j ~ N). 

What these encode will become clear presently. The instructions are the 
following: 

Reading: reading a symbol 0 in state (i, j) (with i < N), either go to 
(i + 1, j), or remain in (i, j) adding a 0 to the stack; 

reading 0 in state (N, j), remain in (N, j) and add 0 to the 
stack. 

Likewise, for reading a symbol 1. 
Similar moves are allowed for the *-states: here, and wherever 

appropriate. 
Exchanging: the following E -moves are possible: 

from (i + 1, j) to (i, j), pushing a 0 onto the stack; 
likewise, with (i, j + 1) and a symbol 1. 

Conversely, if i < N, a 0 may be popped from the stack, going from 
state (i, j) to (i + 1, j); 
likewise, for j < N and popping a symbol 1. 

Lowering: when i ~ mk I' j ~ mkl, it is possible to jump from state 
(i,j) to (i - mkl,j - mkl )· 

Crossing: when i ~ m l , j ~ ml , it is possible to jump from state 
(i,j) to (i - ml,j - ml )*. 

Finally, the initial state is (0, 0) - and recognition is by empty stack 
and designated state (0, 0)*. 

The point of these instructions lies in the following 

CLAIM: At each stage in the computation, with state (i, j), there exist 
numbers x I' ... , X n such that (1) i + 'the number of symbols 0 in the 
stack' equals 'the number of symbols 0 read' -XI' mil - ... - xn . mnl , 
and (2) j+ 'the number of symbols 1 in the stack' equals 'the number 
of symbols 1 read' -XI' mil - ... - xn . mnl . And, for *-states, 
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a similar assertion holds, but with two more subtractions: viz. for m l , 

mz, respectively. 
The proof of the claim is by induction on the number of admissible 

moves in a computation. Clearly, each of them preserves this invariant. 
Moreover, then, once in the final state, with the sum on the left-hand 
side equal to zero, the sequence processed must have had the above 
arithmetical character. Thus, only correct sequences are recognized. 

Conversely, a judicious sequence of admissible moves will accept 
any string with the correct amounts. To see this, the following assertion 
may be proved, by induction on the sum XI + ... + xn: 

CLAIM: If the stack has either all zeroes or all ones, the state is (0, 0), 
and the occurrence totals of symbols 0, 1 in stack plus sequence still to 
be read are of the original linear form, then the machine will proceed 
to recognition. And likewise, in state (0, 0)* without the initial factor 
(ml' mz)· 

Proof. For XI + ... + Xn = 0, the only non-trivial task is to recognize 
a string of ml zeroes and m 2 ones. By obvious steps, state (ml' mz) can 
be reached here, popping and reading - and then, one crossing 
produces the desired final state. 

For XI + ... + xn > 0, the machine is to continue reading until the 
first couple of occurrence numbers (mil' m i2 ) is exceeded (or perhaps 
(ml' m 2) itself) - as is bound to happen. Say, we started reading 
symbols 1, stacking all of these, while using symbols ° to raise the state. 
Then, transferring enough symbols 1 from stack to state, we arrive at 
the state (mil' miZ) - from where we can drop to (0, 0), leaving a 
'homogeneous'stack. 0 

From the claim, it follows at once that all correct strings will indeed be 
accepted. 0 

Comment: how to read and act in order to recognize a sequence of 
zeroes and ones with occurrence numbers given by 

(ml' mz) + xl(m jj , mn) + ... + xnCmnl' m n2 )· 

Suppose that we have a homogeneous stack of symbols 1, are in state 
(0, 0), and the correct invariant holds (i.e., the totals of occurrences for 
0, 1 in (state + stack + sequence to be read) still satisfy the above 
linear form). We want to read ahead to pick up enough o's and 1's to 
reach the first mil' miZ (or perhaps ml, mz itself) in occurrence totals 
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for (state + stack). (Then, we 'drop state', or 'cross over', and repeat 
the process.) Now, in order to get this mil' m i2 , we may have to pick up 
too many symbols 0 or 1 (though not both). E.g., suppose that it is too 
many 0 ('too many l' will just remain on the stack). Then, we first 
transfer all symbols 1 from stack to state (this must be possible: if there 
were too many 1 's already there, then there would have been no need 
to pick up more than the required number of O's) - putting all symbols 
1 read into the state, and enough symbols 0 (stacking the others). 

Why does this work for two-symbol alphabets only? With, say, three 
symbols, one cannot maintain a 'homogeneous' stack - which is vital to 
the argument. 

Our own original approach to this theorem proceeded by enumera
tion, looking for suitable push-down automata directly for each of the 
above Presburger forms. Still, this approach also provides some in
teresting concrete examples. Arithmetical predicates can be represented 
in the tree of numbers, and thus, (Boolean compounds of) Presburger 
formulas are often seen to reduce to manageable geometric patterns. 

In all, the above theorems form an elegant characterization of all 
quantifiers computed by push-down automata. 

Natural Language Quantifiers / Computational Concerns 

As there is such a host of push-down automata, and so few linguistically 
realized quantifiers exploiting them, additional constraints seem of 
interest. For instance, earlier on, a possible restriction was mentioned 
to deterministic automata of some sort. One possibility here is to use 
deterministic push-down automata scanning some fixed finite top 
portion of the stack, provided with an additional facility for a final finite 
state machine check of stack contents. This type of automaton seems 
appropriate for all of the earlier concrete examples. (In particular, thus, 
at least one-third can be recognized deterministically after all.) 

In this light also, another topic to be investigated are connections 
between the 'semantic' conditions on denotations from earlier chapters, 
and natural restrictions on machine instructions. In other words, what 
are the computational effects of our original generalized quantifier 
notions? One example is found in Chapter 10, where an equivalence is 
proven between quantifiers that are of minimal count complexity and 
those that are continuous, in a strong sense, related to that of Section 
2.4. What the latter amounts to, in the tree of numbers, is this: 
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in each of the three main directions of variation in the Tree, i.e., 
increasing a (traveling along a I-line), increasing b (traveling along a 
\-line), playing off a and b (traveling along a horizontal line), the 
quantifier is to experience at most one truth value change. (Cf. also van 
Benthem, 1985a, for several uses of this notion.) 

All previous examples of basic quantifiers satisfy this strong con
dition. Still, uncountably many others share it: being all patterns of 
similar rows - - - . . . + + + (or + + + . . . - - -), whose truelfalse 
boundary shifts at most one position at a time, when descending 
the tree. But, upon combination with the above computational require
ment of linearity - and modulo Variety, our ever-present simplifying 
assumption (d. Sections 1.3., 2.1.), only a countable number of very 
regular patterns remains, viz. those dividing the Tree into a true 
and a false part with a 'periodic' boundary. But, there is a case for 
yet another restriction. The conditions of Continuity and Variety are 
symmetric: holding for Q if and only if they hold for its negation. Thus, 
it seems of interest to strengthen linearity to bi-linearity, in the 
appropriate sense. Then, the following classification results of 'strongly 
computable' quantifiers: 

THEOREM. The bilinear continuous quantifiers are precisely those of 
the following forms (n = 0, 1, ... ): 

at least lin + 1, at most nln + 1, 
less than lin + 1, more than nln + 1. 

For n = 0, this gives the four quantifiers in the Square of Opposition. 
For n = 1, one gets most, not most, least and not least; as in Section 
2.4. Beyond, a computational hierarchy arises, as expected. 

Proof It suffices to consider one case only, the others being 
analogous. Suppose that (0, 0) E Q, with (1, 0) ~ Q, (0, 1) E Q. 
Because Q is linear, this must mean that (0, 0) is its basic case, while it 
allows steps of +x(O, 1). Moreover, non-Q has a basic case (1, 0). Also, 
because of Continuity in I-lines, (2, 0) ~ Q, and so forth: that is, non-Q 
allows steps +x(l, 0). Now Q, being linear, has only finitely many 
possibilities for occupying positions on the line adjoining the non-Q 
left-hand edge; say, at most down to (n, 1). By Continuity, it will then 
also occupy (0, 1), ... , (n, 1) - but nothing beyond that. Thus, non-Q 
can make the jump (n + 1, 1). By bi-linearity then, as well as the 
already described properties of Q and non- Q, their boundary is fixed, 
to form the pattern of at least lin + 1 (n = 0,1,2, ... ). 0 
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Again, questions of fine-structure arise here too. For instance, one 
natural class of push-down automata to consider are those with two 
states, whose stack alphabet is restricted to 0, 1. Even there, a hierarchy 
of further possibilities exists, depending on which actions are permitted 
in rewriting the stack, and which final reading-off convention is chosen. 
The most machine exemplified about the simplest case here, with 
additions or removals of at most one stack symbol at a time, and a final 
convention which essentially just inspects the top of the stack. Of the 
latter variety, there are only few representatives - but, an enumeration 
is omitted here. 

Are there any natural language quantifiers beyond the context-free 
realm? Of course, it is easy to make up examples, such as a square 
number of A more serious candidate is the earlier (relatively) many, in 
the sense that b/(a + b) > (b + c)/(a + b + c + e), or equivalently, 
that a . c < b . e. (For these numbers, see Figure 6.) This notion is 
not computable by a push-down automaton. For, the above predicate is 
not semi-linear, as it essentially involves multiplication. 

Still, this example is not a pure quantifier in the narrower sense; and 
we know of no natural non-additive cases in the latter area. (Another 
more complex candidate is the ternary determiner more AI than A z are E 
(cf. Section 1.8.), whose representation seems to require more than two 
symbols - in which case the preceding theorems would not apply. But, 
upon closer inspection of its Venn diagram, only two zones are involved 
after all. And the same is true, e.g., for as many AI as A z are E.) Thus, as 
was observed in Section 8.1., the quantifier system of natural language 
seems to stop just short of the arithmetical border-line where incom
pleteness and undecidability set in. Thus, while relatively strong, it still 
enjoys the theoretical properties of additive arithmetic. In particular, 
many questions about behaviour or comparison of even higher-order 
quantifiers must be decidable. 

Actually, some caution is in order here. The above arguments only 
provide an effective road for obtaining push-down automata for arith
metically given quantifiers. The converse requires some supplementary 
reasoning. First, given a push-down automaton computing a quantifier, 
an equivalent context-free grammar is to be found. The standard proof 
of this correspondence in the literature is effective. Then, the proof 
of Parikh's Theorem provides an effective method for assigning a 
semi-linear set to a grammar. And finally, transcription of the latter into 
the format of additive arithmetic is effective too. Thus, for instance, 
equivalence of quantifiers as procedures (in the present sense) is indeed 
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decidable. This is somewhat surprising, as equivalence of push-down 
automata in general is known to be undecidable. Evidently, the restric
tion to permutation-closed languages plays a major role in this respect. 

8.4. OTHER LINGUISTIC EXPRESSIONS AND GRAPH AUTOMATA 

Many details of the preceding sections are tied up with special features 
of determiners and quantifiers. Nevertheless, other types of expression 
are also amenable to procedural analysis. 

An intensional parallel to the quantifier case arises with conditionals, 
when treated in the manner of Chapter 4. Then, as we have seen, 
universes will have to carry additional 'accessibility' or 'relative simi
larity' patterns, which requires a more sensitive kind of automaton to be 
used. 

For instance, on the account of Stalnaker, essentially, the antecedent 
situations for a conditional form a strict linear order, the highest of 
which is to satisfy the consequent. A simple push-down automaton 
could do the required search here, keeping one occasion stored, and 
reading positions one by one. Its instruction would be to ignore lower 
objects in the order as they are encountered, while substituting higher 
ones. In the final position, a 'consequent check' is made. A more 
complex graph may be needed on Lewis' account of conditionals, viz. 
an almost-connected order of antecedent occasions, with a satisfaction 
clause as in Section 4.7. In the relevant computation, there may be 
larger 'indifference classes' now; but a similar idea works. Lower 
objects are disregarded, higher ones take precedence, while equally 
high ones falsifying the consequent take precedence over the others. 
Again, the same final check suffices. 

These descriptions presuppose a somewhat enlarged concept of 
automaton already: one which can store objects surveyed, and test for 
their binary relations, as well as unary properties. Alternatively, with a 
finite alphabet of possible outcomes for our test or tests, the structure 
surveyed may be viewed as being a 'letter graph', rather than a linear 
word. That theoretical behaviour changes in this area follows by 
comparison with Section 8.2. The Lewis truth condition is first-order in 
A, B and the order R - but nevertheless, it cannot be computed by an 
ordinary finite state machine; as the latter lacks a facility for making 
R-comparisons. Still, the issue of a starting point of description is 
relatively arbitrary. More interesting here are jumps in complexity. For 
instance, when the occasion graph is no longer almost-connected, but, 
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say, a mere strict partial order (as in Chapter 4), computation of the 
Lewis clause becomes more difficult; as an arbitrary store of individuals 
may have to be checked now and then. No push-down automaton in the 
above sense can do the latter job. 

Another example is the proposal in Suppes (1982) to treat certain 
adjectives as procedures. For instance, the superlative tallest invites 
us to check if an individual x is in top position in the 'taller' order 
on the universe. (Compare the above Lewis case.) Here, a finite state 
machine suffices, as only unary checks are needed of individuals sur
veyed: 'AX' Rxy', 'AX' Ryx'. Interestingly, assigning the predicate tall 
itself involves a more complex procedure, on Suppes' view, viz. to 
check that fewer individuals precede our individual than succeed it in 
the 'taller' order. For this purpose, a push-down automaton will be 
needed. 

While in this specific area, adjectival modifiers may be of interest. 
(Recall also the determiner modifier almost.) For instance, various 
'numerical' proposals have been made for measuring the force of very, 
as it applies to adjectives - some of them quadratic (cf. Hoeksema, 
1984). Here again, the earlier addition/multiplication boundary comes 
in sight. 

With modifiers, one arrives at semantic operations, rather than 
properties or relations. To make the earlier automata compute opera
tions as well, they will have to produce output - something which can 
be arranged in various ways (cf. Hopcroft and Ullman, 1979). Perhaps 
the simplest idea in the present setting would be to use the earlier 
machines as 'sluicing devices', deciding whether or not to pass certain 
items read. Used in this way, e.g., the automaton of Figure 28 passes 
'every other B' from among the A's. Note that the outcome here 
depends on the order of presentation of input: 'permutation invariance' 
is again a non-trivial constraint on automata computing operations. In 
general, of course, more complex actions will have to be performed. 
This topic will not be pursued here. 

Graph Automata 

To obtain further insight into this general area, it seems of interest to 
study a reasonably simple, and yet widely applicable type of graph 
automaton. Yet, searching arbitrary graphs is a complex task. For
tunately, both the above cases, as well as parallel developments in 
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mathematical linguistics, suggest a strong restriction, viz. to finite acyclic 
graphs, perhaps with a root. These are finite rooted graphs in which no 
loops occur. A pleasant property here is their 'inductive' behaviour: 
starting from bottom nodes, then passing on to nodes all of whose 
predecessors were surveyed previously, etc., the whole graph can be 
surveyed in a unique manner. This notion arises, for instance, with 
enriched syntactic trees in grammar: as long no loops have arisen in 
'anaphoric annotation' and related processes, compositional bottom-up 
interpretation will still be feasible (cf. van Benthem, 1983b). 

In line with the above, a graph automaton will be a device that can 
test nodes for features, moving up the graph (in parallel fashion) from 
daughters to mothers. More specifically, at each node, its feature 
combination is inspected, after which a check is made of the results 
already obtained on the daughters, the nature of which may depend 
on the feature values registered. As there is no limit to the number 
of daughters (we are working in semantic models, not on syntactic 
structure trees), an infinite enumeration of cases might be necessary 
here in stating the desired transition functions. In the spirit of this 
chapter, however, we want a uniform checking routine, finitely speci
fiable in advance: in the simplest case, a finite state machine. This 
machine will read 'final state markers' left on the daughters in the 
previous round, subject to an entry convention specifying, for each 
feature combination appearing on the original node, in which state to 
start up the machine. The latter's final state will again be marked on the 
original node itself, this being the result of the present round. Finally, 
the whole graph is accepted if our automaton stops on its root in an 
accepting state. 

EXAMPLE. Computing first-order properties of graphs. 
Consider the following condition on graphs with one feature A: 

Vx(Ax --> Vy(R+xy --> lAy)) /\ VX(IAx --> Vy(R+xy --> Ay)) 
(,alternation'). 

Here, R+ expresses immediate dominance. A recognizing finite state 
automaton has three states: 

a l ('accept, with top position A'), a2 ('accept, with top 
position I A'), b ('reject'). 

When reading feature A on a node, it enters state a I, and starts 
scanning final states already reached on the daughters of that node. 
(Think of the former as displayed in some way. Some theorists like 
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their machines to leave coloured pebbles on their trail, as in the story of 
Hans and Gretchen.) Now, when reading some at or b, the machine 
enters state b, never to leave it. Only with encounters of a2 only, will it 
produce state at for our original node. The case of initial feature non-A 
is symmetrical. 

Alternatively, one can give the finite state machine an input/output 
alphabet, so as to circumvent the subtlety of 'states displayed' versus 
'states in action'. 

Various further theoretical questions about this kind of automaton 
are investigated in van Benthem (1985g). Notably, several issues of 
definability arise. Any graph automaton M recognizes a certain class of 
finite 'featured graphs', or equivalently, it computes a property JrM of 
the latter. Given any automaton M, can its corresponding JrM be 
defined in some perspicuous fashion? 

One general answer is this. For every M, JrM can be described by 
a monadic existential second-order sentence having the graph relation 
R and its feature predicates as first-order parameters. The idea is 
essentially to assert that there exist unary predicates on the graph 
(marking states assumed by M while processing the latter) such that 
'suitable transcription into first-order terms of: entry convention, transi
tion diagram for M, state marking convention, accepting state at the top 
node'. 

But, the preceding definition of Jr M merely mimicks the presentation 
of M itself in an unenlightening way. The point about this presentation 
is that it is recursive (and hence implicit): acceptance of nodes is 
made dependent on their features plus accompanying conditions on 
(non-)acceptance patterns among their daughters. What we would 
prefer is an explicit definition of Jr M , if possible. To take a specific case, 
suppose that M's acceptance of a node depends on its features plus 
some first-order condition on (non-)acceptance of its daughters. (This 
case will occur when the finite state checking routine is acyclic in the 
sense of Section 8.2.) Then, can JrM be described as a first-order 
condition too, on the graph order plus the feature predicates? In 
general, it is hard to find such explicit descriptions. 

EXAMPLE. A simple first-order recursion. 
Machine M acts as follows: (i) if a node has feature A, then Mends 

up accepting it iff no predecessor was accepted, (ii) if the node lacks 
feature A, then M accepts it iff some predecessor was accepted. 
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Consideration of simple cases (close to the bottom leaves) will provide 
some impression of what is going on, but a general explicit description 
of the class of trees recognized remains elusive. 

A great improvement occurs, however, when the machine is allowed to 
inspect all predecessors of any node, instead of only daughters. In 
that case, the implicit description of the graphs accepted may be 
formulated as a recursion over all predecessors in a class of well
founded structures. Then, techniques from 'modal provability logic' can 
be applied (cf. Smoryllski, 1984), in particular the De Jongh-Sambin 
Fixed Point Theorem. The latter gives us an algorithm for converting 
implicit definitions into explicit ones, at least for simple (modally 
definable) cases. E.g., for the previous example, the condition obtained 
is the (correct) 

(Ax 1\ 'c/y(Rxy -+ lAy)) v (lAx 1\ 3y(Rxy 1\ Ay)). 

In general, even with acyclic checking routines, our graph recursions 
will employ arbitrary numerical first-order quantifiers over predeces
sors (not just the 'modal' 'c/, 3). Moreover, there will often be a multiple 
recursion, defining a family of accepting state predicates at the same 
time. As De Jongh has shown in the meantime, the above algorithm can 
be extended to deal with all these cases. (In fact, it works even beyond 
the first-order realm; but, there are limitations too.) So, we can answer 
the question raised before: 

if a graph automaton is acyclic, then its associated graph property is 
first-order. 

One obvious converse question now becomes if all first-order prop
erties of featured graphs are computable in our sense. For the case of 
inspecting all predecessors, this is refuted in van Benthem (1985g). For 
the case of inspecting daughters only, the answer may well be affirma
tive. In addition, there are analogous questions concerning the monadic 
second-order formalism introduced above. 

These illustrations will have conveyed the flavour of this kind of 
automaton, and the agenda for research. 

8.5. PROCEDURAL SEMANTICS 

Taking procedures for actual denotations of certain linguistic expres
sions turns out to be a fruitful perspective. Indeed, Suppes has sug
gested that the idea extends to all of natural language - citing even a 
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'procedural' view of proper names, as 'criteria of identity'. When the 
enterprise is advocated in this generality, some caution is due. 

First, the proper name case may point at a possible confusion. Of 
course, even on the orthodox view, in every interpretation of language, 
there is some functional connection between linguistic items and their 
denotations - and this function may come with a procedure. Thus, 
Julia denotes the girl Julia; but, a procedure may be necessary to 
recognize her if you saw her. Put differently, a procedural view might 
be appropriate to Fregean senses, while leaving traditional denotations 
undisturbed. But, the procedural perspective is not external in this 
sense. It is supposed to apply 'inside models', so to speak. But even 
there, a facile over-applicability threatens. For, in our type-theoretic 
framework (Chapters 3, 7), virtually every denotation is a function -
and as such, may be thought of as a procedure. Thus, the present 
approach only acquires some bite by descending from this general level. 

But then, semantic population problems only seem to get worse. One 
function, in the set-theoretic input/output sense, will correspond to 
many intensionally different procedures for computing it. Fortunately, 
however, this intensional move also suggests a more 'categorical' per
spective upon type-theoretic models, with each functional domain 
containing enough, but not necessarily all set-theoretically possible 
arrows. (See Section 3.3. for a similar proposal.) Even so, this view 
does not yet give us concrete restrictions of the set of all possible 
functions. To obtain the latter, one might articulate general conditions 
of computability on semantic meanings. For instance, should one con
sider only recursive functions? Or perhaps continuous functions, in the 
sense of Scott's 'domain semantics'? Such global notions seem rather 
far removed from the examples which gave the idea of procedural 
semantics its initial flavour. 

Therefore, pursuing further case studies, like the ones in this chapter, 
may be a more sensible way of finding substantial forms of procedural 
semantics at this stage. 

Regardless of the eventual outcome of this program, it should be 
stressed that there need not be any incompatibility here with the usual 
denotational views. There is always a distinction available between 
'truth conditions' and 'verification conditions' (suitably understood). 
The latter view may complement the former, by introducing concerns 
of computability into contemporary semantics. 

Moreover, the type of research advocated here may help in provid-
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ing a handle on questions of learnability, which are just as interesting in 
semantics as they have been in syntax. Still, there is a long way to go 
here. Notably, learning seems to involve an interplay of computation on 
with representation of semantic objects. Of course, judicious represen
tation of the objects for computation has been used throughout this 
chapter, but it has not been treated as a topic in its own right. In a more 
elaborate theory, one would have to study the interaction of both 
aspects of semantic competence. (As computer scientists know, creating 
economical 'data structures' is just as important as developing elegant 
'algorithms'.) Final judgments of complexity will then depend on a 
balance between these two components - witness also the discussion at 
the beginning of Section 8.4. Even so, the present approach may have 
served its purpose as a plea for a computational semantics. 



PART III 

METHODOLOGY OF SEMANTICS 



CHAPTER 9 

LOGICAL SEMANTICS AS AN EMPIRICAL SCIENCE 

Despite a common interest in 'logical structure', often pursued with 
model-theoretic tools, logical semantics and philosophy of science are 
nowadays disparate subjects. There have been prominent philosophers 
whose work spans both fields: Carnap, Reichenbach, Quine and 
Putnam, to mention some resounding names. But even with these, 
combination does not necessarily mean integration. This lack of contact 
is somewhat surprising, as several natural bridge topics exist, such as 
the area of natural laws/counterfactuals/modality or modality/tense/ 
time. Indeed, the difference between formal semantics of natural 
language (sentences or texts) and that of scientific theories seems only a 
gradual one, in the level of 'logical aggregation'. 

In this chapter, we take a look at logical semantics using some 
notions and insights from the philosophy of science. Excessive meth
odological attention of this kind can easily smother an infant science in 
the cradle. Therefore, our aim is to comment, not to regiment. 

9.1. LOGICAL SEMANTICS AND GENERAL PHILOSOPHY OF 

SCIENCE 

Ever since the Vienna Circle enlisted logic for its theory of science, 
ideas from logical semantics have had some audience among philos
ophers of science. Two recent examples that come to mind are the role 
of the Kripke-Putnam theory of rigid reference in Kuhnian debates on 
theory change, or Mittelstaedt's use of the constructivist dialogue 
semantics of Lorenzen in an operationalist analysis of physical theories. 

In contrast, philosophers of science have often shied away from 
applying their insights to deductive sciences, such as mathematics or 
logic. It took Lakatos' Proofs and Refutations to scrutinize the mathe
matical activity with a Popperian eye, and logic has not even been 
treated in this way yet. And yet one may study, at a general level, 
semantical research programs, just as has been done in other sciences. 
For instance, there is nothing immoral about asking whether the flood of 
completenes theorems in intensional logic shows that Kripke's research 
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program has entered upon a Lakatosian 'degenerative phase'. Such 
questions may be vital for the understanding and development of a 
subject. Here is a more historical example. Why has the formalist 
program in logic been so much more successful than the logicist one; 
even though most of its tenets were refuted in due course? One reason 
must surely be Popper's point that stronger falsifiable claims are usually 
preferable over weaker, more tenable ones. (A logicist claim that every
thing may be formalized in this or that logical format, is not risky 
enough.) Such points are still topical. A modem semantic research 
program like Montague Grammar runs precisely the same risk of 
sterility, if its practitioners do not start adding falsifiable claims soon. 

But also within a particular research program, philosophy of science 
may help the semanticist in recognizing problems for what they are. 
One prominent example is the vexed issue of the empirical evidence of 
semantics. A familiar procedure in the area is the gathering of a 
paradigm set of typical (non-)inferences, which a formal semantics is 
required to explain. These data are seldom discussed systematically; 
and yet they exhibit all the familiar problems of empricial science. First, 
the selection cannot be random (although a cheerfully naive inductivism 
is widespread in the area). One should try to be explicit about one's 
search-light theories, to quote Poper again - as semantic 'facts' do not 
present themselves: we do. Then there are more subtle aspects of the 
semantic data, calling for awareness of 'theory-loading'. To begin with, 
one does not work with raw instances of particular (in )valid inferences, 
but already with half-processed versions (in the form of schemata). One 
consequence is that we are explaining classes of inferences, rather than 
single cases - a phenomenon not unlike the situation in natural 
science, where one is explaining empirical generalizations, rather than 
isolated facts. Also, such schemata involve a fair amount of theory
loaded interpretation in their very structure. The uncertainties of 
mathematical representation of data in the empirical sciences are 
reflected in the vicissitudes of 'logical form' in semantics. 

Not only the representation of semantic data is theory-loaded, the 
very judgments of (non-)validity are affected as well. Consider the 
simple sentence Alexius will not have cried. A Dutch linguist once 
insisted that it had only one reading: " WH cry (Alexius)'. A Montague 
grammarian found that two readings fitted into his system, adding 
'W, H cry (Alexius)'. And the students in our tense logic class 'see' 
three readings, viz. also' WH, cry (Alexius)'. Evidently, the semantic 
observer and the semantic theorist are not independent. 



LOGICAL SEMANTICS AS AN EMPIRICAL SCIENCE 181 

It has been objected that the above view equates semantics with 
the social sciences, with their perennial revision of the evidence. And, 
there is much to be said for this view (if only to refute the prejudice 
that social science could not be exact). For example, semantics and 
some parts of social science share the study of 'internal relations' (in 
Wittgenstein's sense) shaping our experience of life. Moreover, the 
well-known phenomenon of social laws changing their own domain 
of application by becoming known is reflected in the observable 
interplay between semantic judgments of validity and norms derived 
from semantic theories. In this light, some contemporary discussions of 
the status of logical laws appear antediluvian. 

Admittedly, earlier discussions in this book of 'intuitions' concerning 
denotational constraints (cf. Chapters 1, 2, 4) also had an ancient 
'immutable' ring. In fact, it was claimed in Section 4.2. that, whereas 
judgments of inference can be fluid, statements of more general 
semantic principle might be more permanent. Still, even there, changes 
are possible - and are even facilitated by our formal scrutiny. 

At a more concrete level, philosophy of science provides new 
perspectives upon questions concerning specific semantic theories. For 
instance, the debate surrounding the status of theoretical terms is 
immediately relevant. Take the common complaint that the 'acces
sibility' or 'similarity' relations of intensional semantics have no 'real 
content'. The presupposition here seems to be a widespread realist 
conviction that semantics should provide 'the correct' account of 
meaning. Thus, sober instrumentalist views of such theoretical terms 
would not be acceptable. Now, this mayor may not be a reasonable 
additional demand on semantic theories. But the burden of justification 
lies surely with those who want to be stricter about 'accessibility' in 
Kripke semantics than they would be about 'gravity' in Newtonian 
mechanics, or 'sublimation' in psychology. 

On this topic of theories and theoretical terms, more detailed formal 
studies are available - an outline of which follows here. 

9.2. THE FORMAL STR0CTURE OF SCIENTIFIC THEORIES 

The simple picture of a theory as a single formal system is inadequate 
for empirical science (or mathematics, for that matter). A logically 
congenial richer format has evolved in the Ramsey /Przet~cki/Sneed 
tradition. 

In Ramsey (1929), an empirical theory is presented as a two-stage 



182 CHAPTER 9 

affair. Individual facts are recorded in an observational 'primary 
language' Lo, which also allows for the formulation of experimental 
generalizations or laws To. Such laws are often taken to be purely 
universal statements, without nestings of quantifiers. The primary 
language may be interpreted in Lo-structures in some standard sense: 
these then serve as the appropriate (representations of) pieces of 
reality. Thus, the primary laws define a class MOD (To) of empirical 
situations where the primary system obtains. 

Next, a convenient redescription occurs in some 'secondary lan
guage' Lt. There will now be a dictionary translating Lo-primitives into 
(possibly complex) Lt-predicates - as well as a set of axioms. The 
latter are the theoretical principles of the theory, the former represent 
what are sometimes called 'correspondence principles'. The whole 
theory T = T(Lo, L t) will then consist of these two components. What 
is the point of this manoeuvre? Well, T affords a simpler view of the 
reality described in the primary language, through the introduction of 
suitable abstract concepts. 

The status of the Lt-terms differs from those in Lo. At the primary 
level, we are mostly interested in knowing if T's Lo-consequences are 
trustworthy. Now, as a simple point of logic: if T(Lo, L t) I- cp(Lo), then 
3 T( Lo) I- cp( Lo); where 3 T( Lo) is the existential second-order closure 
of T with respect to its Lt-vocabulary. The latter so-called Ramsey 
Sentence of T contains, therefore, all its empirical consequences. Thus, 
theoretical terms need only be interpretable in some (not: one unique) 
way. 

Incidentally, we can also see now why To need only contain universal 
laws. More complex sentences, such as the universal-existential form 
Vx3xRxy, may be brought into their Skolem normal forms 3fVxRxf(x); 
after which the existential prefix may be absorbed into that of the 
Ramsey sentence. 

Several connections now seem relevant between To and T. First, 
obviously, T should explain To in the following sense ('experimental 
laws are derivable'): 

(1) To ~ T r Lo; 

or equivalently, 

(2) MOD (T) r Lo ~ MOD (To). 

A less immediate condition is that T be as strict as possible in fulfilling 
this task: 
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i.e., Lo-insights from Tare' To-safe'. 
Together, (1) and (3) express that T should be a conservative 

extension of To. This is one well-known formulation of 'eliminability' of 
theoretical terms. But, it is tempting to equate (3) with the semantic 
requirement that 

(4) MOD (To) ~ MOD (T) r Lo. 

le., each intended empirical situation can be expanded to a model for 
the whole theory T by the introduction of suitable theoretical term 
denotations. (Or, all models for To satisfy the Ramsey sentence.) (1) 
and (4) together may also be stated as the following principle of 
commutation: 

(5) MOD (T r Lo) = MOD (T) r Lo. 

This is the condition of Ramsey Eliminability, which has been studied 
in Przet~cki (1969), van Benthem (1978). In general, it is stronger than 
conservative extension. For, condition (3) is weaker than (4) (whose 
consequence it is). On finite structures, there is also a converse; but 
infinite models for To may admit only of an ('elementary') extension 
which can be expanded to a model for T (in the presence of (3». This 
amounts to postulating additional empirical objects in order to save the 
theory; in itself, a familiar procedure in science. 

This approach can be generalized to the case where the operation 
relating T-models to Lo-structures is not simply restriction, but some 
other functor. E.g., if To is interpretable in T through some translation 
7:, then 7: will induce a functor from Lrstructures to 7:-defined Lo
structures. (Conditions on such a functor inducing, conversely, such a 
syntactic translation are given in van Benthem and Pearce, 1984.) 

The Ramsey account was refined in Sneed (1971) - so as to include 
a more sophisticated view of theoretical terms. The idea that an 
empirical situation becomes a model for the theory T by introducing 
merely some theoretical predicates satisfying the axioms seems too 
weak. Their denotation is to be determined in some stronger sense. 
But the obvious road, that of requiring unique expansions, leads 
to Camapian reductionism: by Beth's Definability Theorem, all Lr 
predicates would become explicitly Lo-definable on the basis of T. 
But then, this is not the correct analysis anyway. The point is that 
theoretical predicates are constrained by the fact that they have to 
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behave 'regularly' across different empirical situations. E.g., mass values 
for the Earth should not differ according to the particular mechanical 
system one happens to be considering. Such constraints on simul
taneous expansion of To-models may well enforce unique extension for 
the Lt-vocabulary without implying reducibility in the above sense. 

Another, less formal part of Sneed's account concerns the very 
distinction between empirical and theoretical vocabulary. According to 
his well-known criterion, a term is to count as 'T-theoretical' if every 
attempt to determine its denotation presupposes a successful applica
tion of the theory T itself. 

This concludes our survey of formal theory structure. 

9.3. LOGICAL SEMANTICS AND FORMAL PHILOSOPHY OF 

SCIENCE 

The preceding view of theories is not limited to empirical sciences. It is 
equally useful for deductive disciplines. Indeed, Ramsey's account had a 
predecessor in Hilbert's set-up for mathematical theories. These have a 
finitistic core of 'concrete' statements, with a set To of rules of calcula
tion. Again, these will be universal formulas. (One might even pursue 
an analogy between 'experiments' and 'sums'.) This core is streamlined 
through the introduction of an abstract theory T involving abstract 
notions, such as 'set' or 'infinite' totality. T generates higher proofs for 
elementary statements; and again, Hilbert's ideal was to establish that 
these were superfluous in principle (though certainly not in practice!): T 
was to be a conservative extension of To. For further connections with 
the above discussion, see van Benthem (1982a). 

We now proceed to the inner sanctum of deductive science. The 
analogy to be pursued here is extremely simple. A logical semantic 
theory gives us a truth definition linking sentences in some object 
language to descriptions of semantic entities in some metalanguage. 
This is the basic Ramsey triad of 'dictionary', 'primary' and 'secondary 
system'. 

Further details are supplied by Section 9.1. The facts of semantics 
are judgments of (in)validity of certain inferences (judgments about 
'readings' being reducible to these). It has been noted that such judg
ments may change under theoretical pressure: but, a formal theory fixes 
a certain stage. (After all, most social changes do not occur very 
abruptly.) This formulation should be modified, as we have seen, to 
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accommodate judgments of (in)validity of schemata. These express laws 
covering many individual facts ('types of outcome'). Note that there can 
be both 'positive' cases: CPI' ••• , CPn I- + 1/J, and 'negative' ones: CPI' •.• , 
CPn I- - 1/J. 

Now, the primary statements often come with a 'prima facie' seman
tics; for instance, in terms of 'meaning algebras'. Next, one searches for 
a deeper level of description, usually in some set-theoretic format. The 
latter will have its own 'working logic' of theoretical axioms T; and one 
check of a good choice is that one must be able to derive the laws, 
while avoiding all non-validities. Authors often forget about the 
invested theory T here, and talk as if the semantics justifies the laws for 
free; but this is obviously naive. For instance, a 'proof' of a predicate
logical axiom in Tarski semantics usually presupposes that very axiom, 
and some set theory besides. 

This general point of view is also suggestive for logical semantics of 
natural language. There, all terms, whether theoretical or observational, 
occur in a single all-encompassing medium of discourse - and we 
are forced to think about possible divisions into Lo and Lt-storeys. 
(Actually, this holds for science as well: there is often no natural order 
among scientific theories - and what is 'observational' vocabulary at 
one level may be 'theoretical' at another.) It is tempting to recall Sneed's 
criterion of theoreticity here, especially in connection with the remark 
about the circularity of logical justifications. Sneed makes theoreticity, 
in general, a context-dependent notion: the same term might be 
theoretical in theory T, and observational elsewhere. Could it be that 
the logical constants are distinguished, however, as those terms which 
are T-theoretical for every semantic theory T? 

Many further speculations are inspired by the above. For instance, 
van Benthem (1983b) considers an alternative to current implementa
tions of Frege's Principle of compositionality by explicit definitions 
for certain constructions; say, the comparative -er, in terms of com
ponent adjectives. Instead, it might be sufficient to have a combined 
adjective/comparative theory 'determining' the meaning of the com
parative construction to a suitable degree. But, this goes beyond the 
boundaries of the present chapter. We now tum to one concrete 
example, viz. the semantics of propositional modal logic, to see where 
the preceding viewpoint takes us. 
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9.4. MODAL LOGIC: THEORETICAL TERMS 

Possible worlds semantics for modal logic may be viewed as a theory in 
the above sense. For instance, let the laws To consist of precisely all 
axioms in the so-called minimal modal logic K (cf. Section 5.2.). The 
primary semantics might use modal algebras in the usual sense, the 
secondary semantics ordinary Kripke models. No simple expansion is 
possible here from primary to secondary models. But, there exist 
well-known functors between these two kinds of semantic structure, as 
in the more general perspective mentioned in Section 9.2. (cf. van 
Benthem, 1985c). Here, we shall use a perspective that is somewhat 
closer to the simpler case. 

Suppose that there is an intuitive picture already for the primary 
system, beyond an abstract algebra of meanings. Again, To equals K; 
but, Lo-structures will now be models M = < w, m, V), where W is a 
universe of possible worlds, m a modal operation on subsets of W (cf. 
Section 5.2.), and V a valuation mapping proposition letters to the 
range of worlds where they hold. As it stands, m is a mere formal 
device - reflecting only whatever conditions To chooses to impose. 
Here, these are the two K -axioms: ' 

m(A u B) = m(A) u m(B) 
m(0) = 0 

(<>(cp v tfJ) +-+ (<> cp v <> tfJ» 
(<> false +-+ false). 

Then, the secondary system has ordinary possible worlds frames 
< w, R, V) with an accessibility pattern R. Its language is the matching 
first-order one, having R, = as well as unary predicate letters Q, one 
for each proposition letter q. The bridge between the two systems is 
given by the usual Kripke truth definition, which may be viewed as 
translating primary modal formulas into secondary ones, via the key 
clause 

Oq I- 3y(Rxy A Qy). 

Here, 'x' is a parameter for the world of evaluation. (E.g., the complex 
formula <>Op -+ -,Oq would go to 3y(Rxy A 'r/z(Ryz -+ pz» -+ 

-, 'r/y(Rxy -+ Qy).) Finally, the theory T may be taken to be just 
ordinary predicate logic in this case. For richer primary logics, addi
tional laws for R will be needed - witness the S4-example in Section 
5.2., which requires R to be transitive and reflexive. This fit between 
various modal logics and special model conditions is one of the main 
virtues of Kripke's enterprise. 
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In this perspective, what becomes of the earlier central questions 
concerning empirical theories? As it turns out, these return as well
known logical topics. 

First, there was the explanatory part 'To ~ T r La'. This is precisely 
the content of the soundness part in the usual completeness theorems 
of modal logic: via the truth definition, all K -axioms follow from the 
possible worlds theory. Likewise, the strictness requirement' T r La ~ 
To' corresponds to the completeness part. Thus, the ubiquitous logical 
completeness theorems have a natural motivation for the philosopher of 
science as well: they embody conditions of adequacy on empirical 
theories in semantics. 

Now, there was also the stronger condition of Ramsey eliminability 
for theoretical terms. To establish the latter, every primary model is to 
be expanded to a model for the whole theory (here, just the truth 
definition) through the introduction of a suitable accessibility relation 
R. Here, the analysis of Section 5.2. becomes relevant. On finite 
universes, a standard definition produced such an R. So, if this restric
tion is accepted for semantics (cf. Section 1.2.), the theoretical term of 
Kripke semantics for K is strongly eliminable. In general, however, R 
can only be introduced in this way when m commutes with arbitrary 
(possibly infinite) disjunctions ('continuity'). Otherwise, obstacles may 
be encountered. 

EXAMPLE. Let W be the set of natural numbers N, with the modal 
operation m defined by: m(A) = A u to} if A is infinite, m(A) = A -to} 
if A is finite. Both K -axioms are satisfied here, without infinite 
distributivity. (For, (N=)m(N) 'i' Un E Nm({ n)) (= N - (O)).) Yet, the 
latter would hold automatically if m were R-representable in the sense 
of the truth definition. 

Actually, this discussion still has to be complicated somewhat. For, it 
may be more realistic to consider the modality m as given only on 
those sets of possible worlds which are the range of some proposition 
expressible in the primary language. In that case, an introduction of R 
has to use a stipulation different fom that of Section 5.2.: viz. 

Rxy if, for all A in the domain of m, if yEA, then x E m(A). 

These considerations do not exhaust the role of the usual (Henkin
type) modal completeness proofs. For, the latter may be viewed 
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as being a set-theoretic representation method applied to primary 
(Lindenbaum-)algebras. As such, it is closer in spirit to the original 
set-up, however. (See also the account of the emerg~nce of possible 
worlds in Section 7.9.) 

Another aspect of the 'determination' of theoretical terms was the 
occurrence of constraints in Section 9.2. Primary K -models need not 
possess unique R-expansions, as is easy to see. In line with Sneed's 
suggestion, then, one would have to look for plausible requirements on 
accessibility relations across different universes of possible worlds - as 
was done, in fact, for conditionals in Section 4.7. The latter would be a 
good topic to analyze in the present light too, as various methodological 
remarks in Chapter 4 invite comparison with the present views. 

Finally, all this attention to eliminability of theoretical terms does 
not imply that the latter is a very common, or even desirable feature in 
ordinary science. Non-conservation results are often just as important. 
Therefore, the so-called incompleteness theorems of more recent modal 
logic are equally relevant (cf. van Benthem, 1979). These will be the 
theme of the following section. 

9.5. MODAL LOGIC: A RESEARCH PROGRAM THAT CANNOT 
FAIL? 

When it arrived around 1960, possible worlds semantics constituted a 
clear conceptual advance. Existing syntactic modal theories turned out 
to be characterized in an enlightening way by means of simple elegant 
conditions on model classes. Since those days, this research program 
has become a routine enterprise, modelling a wide variety of intensional 
logics. With the introduction of the Henkin proof technique into the 
area, completeness results have become almost predictable - so much 
so, that various commentators have become worried. Could it be that 
this program, as conceived of today, is irrefutable, in the sense that 
every effectively axiomatized intensional logic can be provided with a 
complete possible worlds semantics? After all, there are so many 
parameters in the enterprise which can be (and have been) manipulated 
that almost any kind of fit seems feasible. Logicians allow themselves 
various types of model, containing' alternative relations of different 
arities, special purpose conditions upon these, restrictions to 'dis
tinguished worlds', and indeed do not shrink from modifying truth 
definitions to suit their purpose. With so many degrees of freedom, the 
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positive statement that a certain logic has been 'semanticized' loses 
much informative content - and one would expect to learn more from 
a negative result. 

Fortunately, these exist - and so, the possible worlds program is 
genuinely informative, having a potential for failure. To obtain this 
result, two ingredients are needed. One is the earlier analysis of what is 
meant by giving a 'possible worlds semantics' for a given logic, in terms 
of two degrees of freedom: choosing a truth definition, and selecting 
model conditions. The second ingredient is the earlier-mentioned in
completeness phenomenon, now assuming a wider significance. 

In line with prevalent symbolism in the relevant literature, we 
shall now switch to the basic modality 0 (necessity), with K-axioms 
D(tp A 1/J) +--+ (Dtp A D1/J) and 0 true. Giving a possible worlds seman
tics now involves the following. First, a correlation Dp 1-+ a(x, P, *) is to 
be fixed (intuitively, 'p holds at world x'), where P stands for the set of 
worlds validating p, and * stands for any number of relations 'pattern
ing' the universe of possible worlds in this particular semantics. In 
general, then, a truth definition -r sends modal formulas tp to formulas 
-r( tp) of the secondary semantic language, through the clauses 

-r(p) = Px, -r(i tp) = i -r( tp), -r( tp A 1/J) = -r( tp) A -r(1/J), 
-r(D tp) = a(x, -r( tp), *). 

Note that this treatment of the classical connectives amounts to giving 
them their standard interpretation in the semantics. Variations are 
possible here as well (just as for D), witness current semantics for 
intuitionistic, relevant or quantum logic. These will not be considered 
here. 

Right now, no special assumptions will be made about the format of 
a: it can be first-order or higher-order. In Section 4.8., a case was made 
for allowing only first-order clauses here - relocating further com
plexity to the models themselves. (Thus, for instance, a 'Beth semantics' 
for intuitionistic logic, which quantifies over 'barriers' of nodes across a 
tree of worlds, would be rephrased as a first-order semantics having 
models with both nodes and branches in the tree, together with explicit 
semantic conditions governing these.) This restriction will return in 
Section 9.6. below. 

Next, the theoretical principles of T are reflected in the choice of a 
class K of intended secondary structures. Usually, K will be defined by 
some set of conditions C, again first-order or more complex. And one 
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goal of the enterprise now becomes, as in Section 9.4., to explain 
primary validities: 

if CPl" .. , cP" f-- + 1jJ, then C, i( CPl)" .. , i( CPn) F= i(1jJ), 

and to explain non-validities: 

if CPl"'" cP" f---1jJ, then C, i(CPl)'" ., i(cp,,) If i(1jJ). 

Often, this becomes even the tight fit of a completeness theorem: 

CPl'" ., cP" f--+ 1jJ iff C, i(CPl)"'" i(cp,,) F= i(1jJ). 

In many cases, the consequence relation 'F=' can be replaced by 
some notion f-- of deducibility for the secondary system. Then, giving a 
semantics becomes very much like the ordinary syntactic notion of 
providing a faithful interpretation for the primary theory in the secon
dary one. Some helpful observations emerge from this analogy. One is 
that ordinary interpretations often occur relativized to some definable 
subdomain of the target theory - and this, essentially, is the way to 
understand what happens when a class of 'distinguished worlds' is 
employed in certain variants of possible worlds semantics. (This pos
sibility will not be envisaged here, as it does not affect our main results.) 
Another is the known difficulty in proving non-interpretability results 
between theories: a warning as to the complexity of the issue of 'non
semanticizability' . 

The above formulation of our enterprise still borders on the trivial. 
For instance, for the standard i in propositional modal logic, there is 
the 'general completeness' result that 

CPl,' .. , CPn f-- K 1jJ if i( CPl)" .. , i( CPn) F= i(1jJ); 

where' f-- K' denotes derivability in the minimal modal logic, a is the 
universal closure of a (for any first-order formula a), and' F=' is just 
first-order semantic consequence. But then, every modal logic L can 
be semanticized through the condition C = {i( cp) I L f-- K cp). This 
would not be a case of semantic explanation, however, but of mere 
re-statement. Accordingly, this cheap possibility will be blocked by the 
following stipulation: 

the conditions on the model class are to refer only to the 
predicates * involved in explaining the intensional operators. 

As it is, this is a little too stringent. For instance, in intuitionistic 
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possible worlds semantics, one requires so-called 'heredity' for atomic 
predicates, but without allowing oneself the above liberties (cf. Section 
7.6.). Such intermediate possibilities will not be considered here. 

Evidently, the above perspective is a very abstract one. Usually, one 
does not think of a truth definition as something to be tampered with, 
or of a model class as a parameter to be set to some advantageous 
position. Nevertheless, it is this generality which gives one the 'strategic 
depth' to study and understand choices incorporated in the usual 
semantic proposals - if not to find alternatives. 

For instance, the announced negative result can now be proved. 
Thomason (1974) contains an example of a modal logic for which no 
class of possible worlds frames exists such that the theorems of the 
logic coincide with the valid principles of that model class. But, here, 
this result is not yet good enough. Could not there be some 'non
standard' truth definition for modality providing a possible worlds 
modelling after all? In order to exclude even this, a stronger incom
pleteness result is needed, due to Gerson (1975). The above-mentioned 
logic (which contains the minimal modal logic K) is even incomplete 
with respect to classes of neighbourhood frames. The latter models 
generalize the usual Kripke frames < w, R) as follows. A 'neighbour
hood relation' N relates worlds and sets of worlds, with the key clause 
in the truth definition being 'DqJ is true at W iff NW[qJ]'. (Notice the 
analogy here with the above general scheme a (x, P, * ).) All Kripke 
frames can be regarded as neighbourhood frames in an obvious way, 
but not conversely. Thus, the Thomason logic has a stronger form of 
incompleteness than the usual one. 

THEOREM. The Thomason logic has no complete possible worlds 
semantics. 

Proof (Kit Fine). Suppose that this logic G had a complete semantics 
in the widest sense of this section. I.e., there exists a truth definition T 

and a frame class K such that, for all modal formulas qJ, qJ is a theorem 
of G if and only if F F= T( qJ) for all FinK. (Here, F F= T( qJ) if T( qJ) 
holds everywhere in F, for every valuation of the atomic propositions.) 
Recall that T involves a relation a(x, P, *) between worlds and sets of 
worlds, for interpreting the necessity operator. Now, for any frame F of 
the relevant type (i.e., that of K), let F* be the neighbourhood frame 
with the same universe of possible worlds, and a for its neighbourhood 
relation. It is easy to see that F F= T( qJ) iff F* F= qJ (in the ordinary 
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sense), for all modal formulas lfJ. But then, {F* I F E K} will be a class 
of neighbourhood frames whose validities match the G-theorems: quod 
non. D 

This incompleteness example is artificial, having been made up to 
illustrate a phenomenon. (Its actual axiomatization would not be very 
illuminating for our purposes here.) Whether any natural, indepen
dently motivated intensional logics exhibit this behaviour remains an 
open question. But also, given at least this potential for failure, an 
explanation would be welcome of the descriptive success of possible 
worlds semantics so far. 

9.6. THE RANGE OF POSSIBLE SEMANTICS 

The preceding framework also suggests further questions. Perhaps the 
most basic of these concern the interplay of the two 'degrees of 
freedom' in semantic explanation. There is a certain trade-off between 
truth definition and model conditions, witness the following observation 
(van Benthem, 1984a). 

EXAMPLE. The modal logic KB, consisting of the minimal modal 
logic K plus the Brouwer axiom B, can be modelled in the following 
two ways: 

truth definition: Vy( Rxy -+ Py) / model condition: R is symmetric, 
truth definition: Vy«Rxy v Ryx) -+ Py)/model condition: none. 

Thus, a question arises as to the division of labour. Which part of the 
burden of explanation is to be borne by the truth definition? 

As was argued in earlier sections, there is a case for keeping the 
latter first-order. In addition, in modal logic, one reasonable proposal is 
this. The truth defintion by itself should account for the validity of the 
minimal modal logic, whereas further modal principles should be taken 
care of by appropriate model conditions. Of course, the original Kripke 
truth definition does just this. Our question then becomes: which range 
of truth definitions would have worked equally well? 

Actually, we shall answer only one half of this question. To validate 
at least K (in a sense to be explained below), a truth definition must 
belong to a small 'Kripke family' of syntactic forms. To validate also at 
most K may well be a property possessed only by the original Kripke 
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clause, and some marginal variants. For a start, recall the key K -axiom: 
(Dp 1\ Dq) +-+ D(p 1\ q). In the light of Sections 1.4., 2.6., there are 
two well-known model-theoretic conditions here on modal operations 
D, as described by their truth schema a(x, P, *): 

(1) a is upward monotone in P: if a(P) and 'Vx(Px -+ P'x), 
then a(P'); 

(2) a is conjunctive in P: if a(PJ) and a(P2), then a(PJ n P2). 

(There are some innocent abuses of notation here.) What we are after 
now is a preservation result (cf. Section 2.5.). Which syntactic forms for 
a are enforced (modulo logical equivalence) by these two constraints? 
The obvious conjecture is this. The ordinary truth definition sets a(P) 
= Vy(Rxy -+ Py). Its only liberalization guaranteeing (1), (2) would 
seem to be 

a(P) = Vy(p(x, y) -+ Py), with p any P-free formula. 

But, there is a subtle difficulty here with infinite models. E.g., the 
following sentence is conjunctive and upward monotone in P, without 
being reducible to the above form: 

'R is a strict linear order, and Vy(Rxy -+ :lz(Ryz 1\ Vu(Rzu 
-+ Pu)))'. 

But then, this 'cofinal eventual truth' on linear orders lacks a stronger 
form of conjunction (compare the continuity of Section 5.2.): 

a is conjunctive+ in P: if a(Pi ) (all i in I), then a holds for 
the predicate n Pi' 

i E I 

This new condition holds for the above scheme, while failing for the 
cofinality example. (Consider the structure <N, <) with Pi = {n ~ i I n 
in N} (i = 1, 2, ... ).) Although conjunctivity+ was motivated by larger 
conjunctions than binary ones, it also has an extreme case, when I is 
empty. Then, the antecedent becomes vacuously true, while the con
sequent states that a must hold for the universal predicate (whose 
extension is the whole domain). Thus, the remaining K-axiom Dtrue is 
subsumed as well. 

THEOREM. A first-order formula a(P) is upward monotone and 
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conjunctive+ in P if and only if it is equivalent to one of the following 
form: 

v x(p(x) --> Px), where pis P-free. 

Proof. The 'if'-direction is immediate, with the 'only if'-direction 
containing the main result. The argument follows a standard model
theoretic pattern, with one new twist to it. 

Consider C( cp) = {P I cp implies p, and P is of the form V x(p( x) --> 

Px) as above}. 

CLAIM. C( cp) 1= cpo 
Once this has been shown, the required conclusion follows by 

compactness: the conjunction of some finite subset of C( cp) will be 
equivalent to cpo Notice here that, e.g., VX(PI(X) --> Px) 1\ VX(P2(X) --> 

Px) will be reducible to VX«PI v P2)(X) --> Px). Notice also that the 
case Pc, for individual constants c, is included, through the transforma
tion Vx(x = c --> Px). 

Now, let lebe any model for C(cp). We shall find a model 6 for cp, in 
which le lies L-elementarily embedded, in such a special way that the 
truth of cp in 6 may be transferred to le. 

As a first step, consider the expanded model CU, A) for the language 
L u {P} (L is the P-free part), enriched with new individual constants 
a for each a E A. Choose new unary predicates Pa for each object a in 
the complement of p1f. 

LEMMA. ThL CU, A) u {cp( Pa), -, Paa I a E A - p1f} is consistent. 
Proof. Suppose it is not. Then, for some ai' ... , an + m , the following 

set of sentences must be inconsistent: 

a(a" ... , an> an + I'· .. , an +m), cp(Pal ),···, cp(Pa), 
-, Pal a" ... , -, Pan an· 

In other words, by some suitable rearrangements, quantifying away 
irrelevant constants in a: 

a(x" . .. , xn), cp(P,), . .. , cp(Pn) 1= PIX, V ••. V Pnxn. 

If n = 1, then this would mean that 

cp(P) 1= Vx,( a(xl) --> Pxl); 

and hence the latter L-sentence holds in le (as it belongs to C( cp»: 
contradicting the truth of a (a,), -, po., in the latter model. 
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If n > 1, then a more extended argument is needed, involving 
repeated use of the Interpolation Lemma: 

From the above implication, one obtains 

cp(PI),· .. , cp(Pn -I), a(xl>' .. , xn), I PIXI, . .. , 

I Pn - I xn -I a:, for short) 
1= cp(Pn) -+ Pnxn (y). 

By interpolation, there exists some tfJn not containing PI> ... , Pn or P 
such that 

L 1= tfJn and tfJn 1= y. 

So, we have cp(Pn) 1= Vxn(tfJ(xn) -+ Pnxn), or 

cp(P) 1= Vx(tfJn(x) -+ Px). 

Moreover, there remains 

cp ( P d, . . . , cp ( P n - I)' a /\ I tfJ n 1= PI X I V . . . v P n - I X n - I ; 

to which the same argument may be applied, yielding 

cp(Pn-I)I=VXn-l(tfJn-I(Xn-l) -+ Pn_Ixn_I);etc. 

In the end, one obtains the following list: 

cp(P) 1= Vx(tfJn(x) -+ Px), ... , cp(P) 1= VX(tfJ2(X) -+ Px), and 
cp(P), a /\ I tfJn /\ ... /\ I tfJ2 1= Px, i.e., 
cp(P) 1= Vx«a /\ I tfJn /\ ... /\ I tfJ2) -+ Px) 

(with a suitable existential quantification performed on the antecedent). 
So, all these consequences must be true in If (being in C(cp». But, 

this contradicts the following facts about the original ai' ... , an: 

a(al, . .. , an), I Pa2, . .. , I Pan and yet I Pal' 

Remark. If the complement of p1I is empty, the next stage of our 
argument does not get off the ground. But, in that case, p1I is the 
universal predicate on If, for which cp holds automatically. But then, cp 
holds in l( - and we are done. 

From the lemma, it follows that the mentioned set has a model b, 
together with an L-elementary embedding h from A to B, with the 
additional property that 

if not- Pa in If, then I Paa, cp(Pa) hold in b. 
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Next, consider () as an L, Pa-model, for any a. Changing () to ()+ (and 
hence also h(lC) to h(1£)+ by enlarging the Pa-denotation to P~ =def B 
- (h(a)} leaves the following two facts undisturbed: - ()+ F= cp(Pa) 

(because of upward monotonicity), - h(1£)+ is an L-elementary sub
model of ()+. 

But then, as ~ is atomically L-definable with a parameter in h(lf) 

~b iff b =F h(a), 

it follows that even 

h(1£)+ is an L, Pa-elementary submodel of ()+. 

Therefore, in particular, cp(Pa) holds in h(lf)+ (for all a E A - pX). 
Now, by conjunction+, these facts together imply that 

(h(lf), n (~ n h(lf)) F= cp; 
a 

i.e., cp holds in the model consisting of the L-reduct of h(lft, with a , 
P-interpretation equal to h[PX]. But, between this model and the 
original model If, h is an L, P-isomorphism (in addition to its being an 
L-isomorphism). Hence, cp holds in If as well. D 

Thus, we have arrived at one strong constraint upon possible modal 
truth definitions. Others might be added, this particular one could be 
changed - but the present pattern of argument will presumably remain 
applicable. 

To conclude, here is another question of syntactic fine-structure, this 
time concerning the model conditions rather than the truth definition. 

Suppose'that a logic has been described using some truth definition 
'! and model conditions C. Now, one wants to change to some other 
truth definition ,!': can the corresponding C' be determined? More in 
particular, for example, if '! belongs to the above family of syntactic 
forms, and C is a set of first-order model conditions, can this descrip
tion always be 'normalized' to the ordinary Kripke clause ('!'), for some 
suitable set of first-order conditions C? 

The obvious strategy here seems to be this. For each frame F in the 
original class, consider the Kripke frame F* with the same universe of 
possible worlds, and AXY • p(x, y) 'for its alternative relation. Then 
F F= '!( cp) iff F* F= cp in the standard sense, for all modal formulas cp -
and hence the same modal logic is modelled by the *-image of the 
original model class. 
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But, the new class obtained is projective (,there exist predicates in 
the original sense such that .. .'), and hence it need not be first-order, 
even if the original one was. 

EXAMPLE. Let C be the condition that R is a strict linear order, with 
r of the form Vy(p(x, y) -> Py), where p(x, y) expresses 'exactly one 
world lies between x and y, in that order'. Now, consider the frame 
F consisting of the integers in their usual order. F* as defined above 
will consist of two disjoint copies of the integers, with the order of 
'immediate succession'. Then, one such copy will obviously be elemen
tarily equivalent to F*. But, an easy argument shows that such a single 
copy cannot be a *-image of any strict linear order. Thus, our projective 
class is not first-order definable. 

This counter-example is not conclusive - as a suitably enlarged 
elementary class C' might still do the job. 

The area abounds in further questions. 



CHAPTER 10 

THE LOGIC OF SEMANTICS 

Now that semantical investigations of natural language have established 
themselves as a recognized scientific activity, research material is 
accumulating which invites reflection. For, much clarity is still to be 
achieved as to the nature of semantic theory, explanation or evidence. 
One way to proceed here is by general philosophizing, much as in 
earlier periods. But a more concrete approach is also available at the 
present stage. There is room for a foundational component of seman
tics, consisting of a logical study of semantic theory. The grand aim of 
such a study was stated already; its specific contributions will concern 
such recurrent issues as the role of 'semantic constraints' on grammar, 
the nature of compositionality, the adequacy of first-order logical 
forms, or the content of 'semantic universals'. Many of these themes 
concern the relation between syntax and its interpretation; and indeed 
one may think of a mathematical semantics as an extension of tradi
tional 'mathematical linguistics', which is essentially a science of syntax. 

In this chapter, various developments in contemporary formal 
semantics will be brought together in one Grand Pattern of ever richer 
conceptions of semantic theory. At each stage, relevant logical ques
tions are asked, and sometimes even answered. Not all relevant studies 
could be fitted into the present framework, but the presentation at least 
provides a coherent perspective upon much of Montague Grammar, 
philosophical logic, the recent generalized quantifier movement, as well 
as the incipient research into discourse representations. 

When one asks just what a formal semantics for some part of 
language achieves, the answer turns out surprisingly difficult to state. Of 
course, at an initial stage, there was still so much elation at the 
discovery of flexible formal modes of description that such questions 
seemed irrelevant. And this may still be the dominant attitude: formal 
frameworks are still appearing on the market with so many conceptual 
parameters that they can model almost anything, and this is usually 
claimed to be a virtue. A comparison may be made here with the early 
days of Logicism, with the Montagovian classics as the counterpart 
of Principia Mathematica. There are dangers in this situation: logicism 
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as the claim that mathematical discourse is formalizable is virtually 
irrefutable, and hence eventually sterile. (This point was raised already 
in Section 9.1.) The same fate looms large over contemporary formal 
philosophy of science, and it could also happen to (some would say it 
has already happened to) Montague Grammar. A fate even worse than 
death is conceivable too. People might not notice the problem, and 
become content with description instead of explanation, as in the time 
of Aristoteleanism. The analogy between contemporary semantics and 
medieval scholasticism, often drawn by critics, may not be completely 
off the mark! 

But there is hope. After all, modern logic escaped its doom by 
developing a much richer range of questions about its subject matter, 
and making falsifiable claims about these - witness the case of 
Hilbert's Program in the foundations of mathematics, refuted by 
Godel's Theorems. And indeed, similar developments may be discerned 
in contemporary semantics, witness the ascending ladder of goals for a 
semantic theory to be presented in this chapter, which has already given 
rise to heroic and instructive mistakes, i.e., to scientific progress. 

10.1. SEMANTICS AS FAITHFUL DESCRIPTION 

Semantic analysis should be true to the actual structure of sentences. 
On this much, most practitioners would seem to agree. This much is 
also about all that would be required by that pioneering school of 
Montague Grammar. For, consider its basic scheme for a semantic 
theory, as displayed in Figure 31. 

dis-B 3 

ambiguated 
sentences 2 tic I ( --=-+ gramme a---. 
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Even in the condensed version with direct interpretation of gram
matical structures, the enterprise has five degrees of freedom, as we can 
choose our prima facie grammar (1), our grammatical analytical tools 
(3), the parsing relation (2), the semantic meanings (5) and the truth 
definition (4). Infallible success seems the reward of industry here. 
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In reality, things are not this easy, as constraints are operative. For 
instance, not just any semantic picture will be acceptable in 5: some will 
even demand first-order models. Nevertheless, much of this is implicit 
ideology. The only explicit constraint formulated by Montague himself 
concerned 4: semantic interpretation was to obey Frege's Principle of 
Compositionality. Now, this principle has been investigated thoroughly 
in an algebraic setting in Janssen (1983). The general outcome may be 
stated roughly as 'anything goes' - even though adherence to the 
principle often makes for elegance and uniformity of presentation. 

The reason why can be stated in very simple terms. Suppose that 
some algebra (A, fJ) with syntactic operations fJ has been chosen, 
representing disambiguated readings of linguistic items, and that, 
assuming the severest possible semantic constraints, some meaning 
algebra (B,.4) is prescribed in advance. Our task is then to see if there 
exists a homomorphism from the former into the latter algebra. (This is 
the algebraic version of Compositionality.) In an extreme case, even the 
connections between syntactic operations and semantic operations in 
.4 are fixed, and we have at least a respectable problem (which can be 
treated with model-theoretic methods). But usually, such a connection 
is not prescribed: indeed, any polynomially definable operation on B 
may be assigned, in principle, to any operation in fJ. The extreme 
versatility of this device shows in the conjuring tricks performed using 
lambda-abstraction by many authors, in cases where the meaning 
algebra comes from some theory of types. Finally, even this presenta
tion is too restricted; for actually, the syntactic algebra (A, fJ) is free 
(being freely generated by the basic lexical items). What this algebraic 
assertion amounts to is this. The construction of (A, fJ) is such that, 
given any connection of operations in fJ with semantic operations of 
the same number of arguments, an arbitrary map from basic lexical 
items to suitable semantic entities will be extendable to a homo
morphism as required. Thus, by itself, compositionality provides no 
significant constraint upon semantic theory. 

This conclusion does not exclude that having a compositional 
semantics as such could be useful. For instance, setting up things 
compositionally has proven a powerful technique in computer science 
for obtaining perspicuous pictures of manipulation of data, as well as a 
convenient format for proving 'correctness assertions' about program 
execution. 

If more 'essential tension' is to be introduced, additional constraints 
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will have to be formulated, drawing upon our fund of intuitive boun
dary conditions. Various suggestions to this effect may be found 
scattered in the literature. For instance, in Landman and Moerdijk 
(1981), the level 3 of grammatical analysis is restricted to that of 
categorial grammars with only syntactic rules of concatenation and 
substitution, while the interpretation 4 should be a homomorphism 
under the fixed convention that concatenation corresponds to func
tional application. And even further conditions might be proposed, 
both on the linguistic side (1, 2, 3) and on the logical side (4, 5). 
Cresswell (1973) contains the idea to let 2 consist of merely flattening 
3-structures, removing auxiliary symbols; while there is a recurrent 
folklore idea to have 1 somehow consist of some context-free grammar. 
Conditions on 5 might assume the form of taking meaning algebras 
only from first-order predicate logic, or some simple type theory. Thus, 
there arises the conception of a semantic hierarchy, in analogy with the 
well-known grammatical hierarchy of mathematical syntax; starting with 
simple grammars, austere logics and tight connections between the two, 
becoming more liberal in its upper regions. 

The study of this semantic hierarchy would be one of the first 
tasks for a systematic mathematical semantics. The earlier-mentioned 
Janssen (1983) gives a fair impression of universal algebraic techniques 
that may be useful here. For a case study, see the intermezzo below. 

Some semanticists find the present perspective thoroughly uncon
genial. The problem, for them, is not to delimit a range of acceptable 
solutions, but rather to find the correct one. Thus, it is reported by 
various observers that our semantic intuition can tell us what are 'the 
correct' truth conditions for a given syntactic operation. Given the 
amount of theoretical reconstruction in formal semantics, such acts of 
faith are rather gratuitous. There obviously is something like 'recogniz
ing a good theory when we see one' in science, but the phenomenon 
needs careful scrutiny. For instance, one might apply criteria of 
simplicity to proposed truth definitions, just as in the philosophy of 
science. But that again will find its place as searching for the lowest 
possible levels in the above hierarchy. 

Intermezzo: Homomorphisms and the Proper Form of Definitions 

A sample question at the above level of generality is the foll~wing. 
Suppose that a language has some set of syntactic operations f, with 
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some constraints on these given by a set of equations To. Now, one 
wants to enrich the language with a new operation g, extending To to T, 
either by explicit definition or via recursion equations, or yet otherwise. 
Furthermore, the original language was already interpreted composi
tionally: i.e., its syntactic algebra If was mapped homomorphically into 
all algebras of the suitable similarity type. Now, here is our wish: 
addition of g should leave these already established interpretations 
'undisturbed'. Which format of introduction for g is to be prescribed, in 
order to guarantee this? 

First of all, the metaphor is to be translated into mathematical terms. 
Here is a first attempt: 

for all suitable algebras b, each 1-homomorphism from If 
onto b automatically remains an 1, g-homomorphism from 
(If, g) onto (b, g') for some unique operation g' on B. (HE) 

In general, HE is difficult to handle, being 'local' in the algebra If. 
Therefore, here is a more global second attempt, in line with prevalent 
practice in this area: 

each 1-homomorphism from _any If in MOD (T) onto b in 
MOD (T) is automatically anf, g-homomorphism. (HE+) 

This formulation is very close in spirit to one in Ehrig et al. (1978), 
on the specification of 'abstract data types' in computer science. 

The second version is more amenable to model-theoretic analysis, as 
was shown in van Benthem (1980). Notably, the special case of HE+ 
with b = If and the identity homomorphism running between them, 
amounts to implicit definability of g in T on the basis of 1, in the sense 
of Beth's Definability Theorem (cf. Chang and Keisler, 1973). The 
latter result then states that g must also be explicitly definable in T in 
terms of 1. I.e., there exists some first-order formula qJ(x, y) in 1 such 
that Vxy(gx = y....... qJ(x, y» is derivable in T. But, such first-order 
definitions are too complicated for our equational theories - and 
besides, they do not guarantee HE+ in their tum. 

A form of definition which does have the latter property is poly
nomial definability: T derives Vx (gx = t(x », for some J-term t (ED). 
But, l •. e latter again is too strong for HE+: a counter-example was 
found by Kees Doets (see the above-mentioned paper). 

One promising weakening of polynomial definability is the following: 
there exists some finite set E of equations in 1 and the variables X, y 
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such that (i) gi = Y is derivable from T + E, and (ii) E itself is derivable 
from T, gi = Y (ED+). The latter form of definability does imply HE+; 
but it is stiJl too strong for the purpose. The real solution eventually 
emerges from a standard model-theoretic analysis: 

THEOREM. The homoJIlorphism extension condition HE+ holds if 
and only if T proves the definition (Vxy(gi = y ...... O(x, y)) for some 
positive first-order formula cp info 

Nevertheless, there is now a 'certain interest to the converse direction 
too. Which semantic conditions match the various notions of defin
ability encountered along the way? For equational theories, here are the 
answers: 

THEOREM. ED holds if and only if J-subalgebras of models of T are 
always closed under the operation g. 

IHEOREM. ED+ holds if and only if each J-homomorphism from an 
t-subalgebra of a model for T into a model for T is already an 
f, g-homomorphism. 

Here, for tuples a in that subalgebra, if g( a) belongs to the subalgebra 
as well, then F(g(a)) = g(F(a)) for the I-homomorphism F. 

All these results employ only preservation of the relevant theories 
under the formation of subalgebras and direct products; and hence they 
also hold for universal Horn sentences, the standard format in the 
theory of abstract data types - which has obvious connections with the 
present area. 

Finally, on this topic of extension by definitions, the connection 
between the two theories (or 'specifications') To and T itself raises 
some further questions. In line with the discussion of Section 9.2., one 
might require that T be a conservative extension of To, either in the 
weaker syntactic sense, or the stronger semantic sense of 'Ramsey 
Eliminability' . 

Finally, we return to the original local extension principle HE. We 
can make some progress here by noting that frameworks such as 
Montague's typically employ free syntactic algebras, which are 'initial' in 
the class of models for their equational theory: 
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THEOREM. If If = (A, 1> is freely generated by some infinite X ~ A 
such that each 1-homomorphism from If into a model for the equational 
theory of (If, g) is already an 1, g-homomorphism, then g is 1-poly
nomially definable in (If, g). 

The converse of this proposition is immediate. In case the set of 
generators is finite, however, counter-examples exist to the theorem; as 
was pointed out by W. Peremans. 

This concludes our discussion of 'successive definition' - illustrating 
the flavour of universal algebraic methods in this area. 

10.2. SEMANTICS EXPLAINS INFERENCE 

The previous account cannot contain all there is to semantics. After all, 
natural language itself does pretty well as a faithful description of 
natural language. If we are to formalize, this had better be for some 
purpose, if we are to avoid sterile cartography. Indeed, there is no 
reason to deviate from common scientific practice here, which is to 
formalize as little as necessary for any given purpose. 

One goal of semantic description stressed by various authors in the 
area is the explanation of (in)valid inference. Semantic intuition pro
vides us with a number of observations on validity or fallaciousness of 
certain proposed arguments, and these are to be accounted for in the 
formal semantics. As Barbara Partee once remarked: "inferences are 
becoming part of the linguistic data". Here, the viewpoint of Section 
9.3. becomes appropriate. There is a prima facie language La, with a 
partial relation =>+ of valid inference, as well as a partial relation =>- of 
invalid inference, representing the above intuitive evidence. Then, one 
introduces a theoretical language Lp with an independent notion of 
derivability f-; and an explanation is to be found in the form of a map 
r taking La-sentences to Lt-sentences in such a way that 

A =>+ B only if r(A) f- r(B), 
A=>- B only if r(A) If r(B). 

How much of a constraint is all·this? Again, the answer is 'sur
prisingly little'. Here is a sample result. 

THEOREM. For countable La, (La, =>+, =>- > is embeddable into 
predicate logic in the above sense if and only if =>- is disjoint from the 
reflexive transitive closure of =>+. 
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Proof. It suffices to show that any countable reflexive transitive 
structure can be isomorphically embedded into the relational structure 
consisting of all predicate-logical formulas with the derivability relation. 
But, this may be seen as follows. Any countable reflexive transitive 
relation may be represented as a countable partial order of 'indifference 
classes'. Any such partial order may, in its turn, be embedded in a 
countable Boolean algebra. And finally, any countable Boolean algebra 
can be embedded into the countably infinite atomless one. But, that is 
precisely the above structure of predicate logic (with an infinite vocab
ulary). Moreover, each formula has an infinite indifference class of 
logical equivalents, and hence there is enough room to accommodate 
our original structure. 0 

We will not go into the combinatorially more complex case where => +, 

=>- are relations between finite sets of premises and a conclusion. (For 
more interesting results about the above predicate-logical structure, see 
Mason, 1984.) 

Simple though it may be, the above theorem illustrates two points. 
One is that vexed methodological quarrels, such as the one about the 
'adequacy of predicate logic', can be resolved into various precise 
problems, to which answers may be found (not necesarily the same one 
in all cases). The other is that we are forced methodologically to 
become clearer about further features of the semantic enterprise, if we 
are to escape the conclusion. 

One obvious move in the latter spirit is to restrict the proposed 
connection 1:' to, say, effective or recursive operations. More in line with 
the preceding, one may impose the condition of compositionality. Thus, 
1:' is to do the job of explaining inference, while respecting syntactic 
structure. Formally, we are now looking for compositional embeddings 
from (A, &, =>+, =>-) into (B,4, 1-, If). But, this is precisely the 
perspective of 'philosophical logic', with its search for completeness 
theorems via suitable truth definitions. And that again, has been 
investigated thoroughly in the preceding chapter, with the outcome that 
there are indeed constraints here: not all given intuitions about in
ference can be 'semanticized', subject to the present constraints. 

10.3. SEMANTIC UNIVERSALS 

In recent years, richer conceptions of the aims of semantics may be 
discerned in various publications. For instance, our study of generalized 
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quantifiers in this book has focused upon special categories of expres
sion (noun phrases, determiners, etc.), discovering a whole fine-struc
ture of Montague Grammar, so to speak. Most conspicuously, this has 
led to the formulation of general conjectures about the occurrence of, 
or connections between certain types of determiner in all human 
languages. This development of 'semantic universals' not only enriches 
the Montagovian fund of semantic themes, it also provides a promising 
rapprochement between earlier 'fragmentary' approaches in formal 
semantics and more 'global' linguistic habits of description - aiming at 
finding higher regularities across one or several human languages. 

Now, by itself, the generalized quantifier framework is just a medium 
of precise description. Contrary to some avowed opinions, it does not 
carry any explanatory power as such. The discovery that the denotation 
of a noun phrase such as nobody's fool exhibits such a familiar 
mathematical structure as an 'ideal of sets' by itself means nothing. 
(Compare Piaget's often repeated observation that the logical opera
tions of identity, negation and converse, mastered by fourteen-year 
olds, give rise to 'Klein's 4-Group'. Nobody has ever been able to fit 
this into some significant theory.) But, the framework invites further 
enquiry, and to that topic we now tum. 

As we have seen in Sections 1.4., 2.6., generalized quantifiers have 
been used as a vehicle for proposing semantic universals concerning 
observed 'systematic gaps' in natural language. For instance, Zwarts has 
conjectured that no human language has determiners denoting strict 
partial orders. Barwise and Cooper also proposed more sophisticated 
dependencies, such as all persistent determiners in human languages are 
monotone. 

When examples such as these first reached traditional semantic 
circles (still dwelling in the realm of Sections 10.1., 10.2. above), the 
immediate reaction was scepsis (or hilarity). There was the unfamiliar 
terminology (,universal' carries nebulous philosophical connotations), 
there were also unhappy experiences in the past with such grand aims 
(see below) - but there was also sheer inability to recognize this 
activity for what it is: an attempt to formulate semantic regularities or 
laws, just as in any science. The above examples may be viewed as 
empirical laws, say like Kepler's - or better (in view of their humble 
nature), Bode's Law in astronomy. 

The relevant criticism, then, is not that people should dare to put 
forward such proposals, but rather how we are to evaluate them. What 
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is still lacking at present is that other component which makes science 
out of systematic observation, viz. some kind of explanatory back
ground theory. (After all, Kepler's laws were only explained by 
Newton's mechanics.) Awareness of this point shows in several publica
tions in the area. Thus, Barwise and Cooper provide some background 
speculation about their proposed universals in terms of psychology, that 
great consolation of so many a semanticist in need of foreign support. 
Keenan and Stavi refer to broad conceptions of efficiency of natural 
language, another pious favourite of many students of semantics. 
Perhaps least substantially, van Benthem has drawn upon 'conceptual 
intuitions'. 

The claim of the present section is that these vague speculations can 
be investigated systematically. A logical foundational study can con
tribute its usual insights here: providing a conceptual apparatus, as well 
as 'limitative results'. Especially, it will tell us how much of the 
proposed universals is due to logic (and mathematics); i.e., to pure 
deduction already; and (thus) where the border line lies with real 
empirical content. This function is particularly important in view of 
earlier experiences with 'linguistic universals', which usually turned out 
to be either tautologous, or incorrect. 

Of course, one might also give Ii more optimistic interpr~tation of 
this phenomenon. Perhaps, the realm of linguistics realizes the old 
metaphysical Principle of Plenitude: every logical possibility is realized 
in some natural language, somehow, sometime, somewhere. 

How far pure logic takes us has been amply demonstrated in 
Chapters 1 and 2. Notably, the above Zwarts universal turned out to be 
true as a matter of logic, whereas others did not. No more need be said 
on this topic here. 

If some mathematics is brought in (actually, some elementary arith
metic), several pleasing insights may be added. For instance, mere 
attention to orders of magnitude turned out to be relevant in the work 
of Keenan and Stavi (cf. Section 1.3.), treating the question how natural 
language manages to attain maximal expressive power with a minimal 
basic vocabulary. Here, we consider another example. Some of the 
'psychological' speCUlations in Barwise and Cooper (1981) concerning 
'minimal verification' of determiner statements admit of mathematical 
statement and proof. 

Consider a set A with n elements. Some minimal numbers of 
individuals in A whose B -behaviour one needs to know, in order to 
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confirm or refute the statement QAB for quantifiers Q, are given in the 
following table: 

Determiner Confirm Refute Total 

all n 1 n+l 
some 1 n n+l 
most [';-n]+ [';-nJ+ n+l 
all but at most one n-l 2 n+l 
precisely one n 2 n+2 

Here, [m I + means: the first integer greater than m, and [m I + the first 
integer no smaller than m. 

Further examples confirm the suspicion that n + 1 is a lower bound 
of complexity. Let us tighten up some definitions. Call xn confirmation
minimal with respect to n, if xn is minimal with respect to the following 
property: 'there exists a couple (kl' k2) in Q (recall the representation 
of quantifiers in the Tree of Nuinbers; d. Section 2.2.) with kl + kz = 

xn which already decides Q at level n, in the sense that any (nl' nz) 
with n l + n2 = n and kl ~ nl, k2 ~ nz must belong to Q'. 
'Refutation-minimality' is defined analogously (Yn). 

THEOREM. For each n, xn + Yn ~ n + 1. 
Proof The decomposition (kJ> k2) of xn which belongs to Q induces 

n - xn + 1 adjacent couples (n!> n2) belonging to Q, and Yn likewise 
induces n - Yn + 1 adjacent couples outside of Q. In all, there are 
n + 1 couples (nl' n2) at level n, and hence n - xn + 1 + n - Yn + 1 ~ 
n + 1; i.e., n + 1 ~ xn + Yn' 0 

Note also that, if such minimal Xn, Yn exist with xn + Yn = n + 1, then 
their induced inside/outside sequences occupy the complete n-row for 
the quantifier in the number tree. 

Now, Barwise and Cooper suggest that basic quantifiers will be of 
minimal count complexity. One, rather liberal way of phrasing this idea 
is to require the existence of minimal confirmation/refutation numbers 
for each cardinality n > 1. Using the tree of numbers, all possibilities 
of this sort.may be surveyed geometrically: 

THEOREM. The quantifiers of minimal count complexity are precisely 
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those for which each row consists of (at most) two adjacent inside/ 
outside segments - in such a way that, going down the tree, the 
extreme 'inside' position can only move one step toward the left or the 
right at a time. 

This geometric pattern can also be described differently. Moving along 
any of the three main directions in the Tree (I, -, \) will produce at 
most one change of truth value. This amounts to Strong Continuity for 
quantifiers QAB, with respect to varying A (cf. Section 1.4.), but also 
A - B, A n B. (A proof may be found in van Benthem, 1985a, using 
Variety.) The latter condition of continuity was already used in Section 
8.3. as one aspect of 'computability' for quantifier denotations. 

An interesting consequence establishes a connection with another 
basic condition on determiners: 

COROLLARY. All quantifiers of minimal count complexity are (either 
upward or downward) monotone. 

This result is obvious from the above description of patterns. 
There is an amazing variety of minimal count quantifiers, as the above 

+/- border may have 2~() distinct shifting patterns. Thus, there arises 
the need for some fine-structure. One way to get this is by imposing 
regularity of the shifting pattern, in line with the Uniformity intuitions 
of Section 2.4. At a first level, the top shift pattern repeats itself -
which leaves only four non-degenerate possibilities: no, all, some, not 
all; being the Square of Opposition. At a second level, the pattern of 
the two top shifts repeats itself - inducing four additional cases: most, 
not most, least, not least; being the best-behaved higher-order quan
tifiers. At higher levels, complexity increases rapidly. But here, we shall 
stop, recalling Emmon Bach's dictum that, in linguistics, the only 
significant numbers are 1,2, n. 

Finally, let us consider a perspective which is not purely logical or 
mathematical, but rather concerned with information (d. Section 4.2.). 
Suppose that D£AB has been stated on the basis of present partial 
knowledge: say, A, B are the denotations of predicates X, Yin E, as far 
as we know them. Then, two types of increase of information are 
possible. We may learn about new individuals, enlarging E to E', or 
also obtain new X, Y-information about old individuals, enlarging A, B 
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to A', B'. It seems reasonable to expect that human communication 
requires basic terms which are 'stable' under such vicissitudes. 

Stability under extension of individuals may be formulated thus. If 
E S;;;; E', A', B' S;;;; E with A' n E = A, B' n E = B, then DEAB 
only if D£,A' B'. Its corresponding picture is given in Figure 32. 

r-----------, E' 

~:, 
. " ,B 
'.. 'J ' ..... _;' ..... ' 
A' 

Fig. 32. 

It seems preferable to decompose this assertion into two aspects. 
One is merely (one half of) the earlier principle of Extension (cf. 
Section 1.3.), the other reduces to addition of information concerning 
already available individuals. Now, stability under extension of informa
tion of the latter kind amounts to upward persistence, for the argument 
A, and upward monotonicity, for B. The intuitive connection of these 
two phenomena may be the proper background for the earlier-men
tioned universal that 'persistence implies monotonicity'. 

This information perspective suggests other notions too. For instance, 
call a determiner communicative if, whenever two people know universes 
E, E' with DEAB, DE·A' B' such that (upon comparing notes) in the 
intersection EnE', A and A', B and B' coincide, then after pooling 
their experience, they will have DE U E.(A u A')(B u B'). Again, this 
seems a rather useful type of expression to possess in human languages 
(see Figure 33). 
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For quantifiers, the previous techniques determine the precise con
tent of this class (cf. van Benthem, 1984e): communicative quantifiers 
are all persistent, and hence first-order definable. In fact, an effective 
enumeration of their forms can be found using the tree of numbers. 

A more systematic theory of information remains to be developed. 
The examples so far might suggest that semantic universals will be 

tied up with determiners, or at least specific lexical items. This is just an 
accident of presentation, however. For instance, general category struc
ture as such also suggests broad regularities across human languages -
witness Keenan and Faltz (1985), which also makes an interesting junc
tion with the existing body of knowledge on comparative linguistics. 
Moreover, the general perspective in Sections 7.8., 7.9. on 'semantic 
mechanisms' (such as type change, inference or intensionalization) and 
their interaction, provides another rich source of general conjectures 
about natural language. 

10.4. DYNAMICS OF INTERPRETATION 

Another pronounced tendency in contemporary semantics is its atten
tion for the dynamical aspects of interpretation. The Montagovian 
scheme is static. But, how are interpretation functions from linguistic 
items to models actually constructed? Perhaps the most substantial 
theory to have arisen out of this movement is that of Kamp (1981), in 
which every grammatical structure generates a discourse representation 
providing the necessary clues (anaphoric and otherwise) for actual 
interpretation in models. 

Even as a medium of description, a separate component of discourse 
representation offers many heuristic insights (cf. Section 1.1.). More
over, it also has some interesting theoretical aspects. For instance, the 
intuitive idea behind the enterprise is that truth of a sentence cp in 
model M will now reduce to embeddability of its associated discourse 
representation DR (cp) in M (being a 'small picture' of part of a large 
world). As was pointed out in van Benthem and van Eyck (1982), this 
particular idea would make truth of cp preserved under extensions of 
the model M - and so, the intuitive account only works for purely 
existential sentences cp. Accordingly, more sophisticated implementa
tions are needed, and provided. 

But again, our earlier point remains, that description is not yet 
explanation. For instance, empirical observations about bounds on 
anaphoric dependencies, or co-occurrence restrictions tend to get 
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copied into the definition of discourse representations - whereas one 
would like to see some independent account. These are early days, of 
course - and, e.g., Cooper has suggested that the plesent dynamic 
framework will be suitable, again, for formulating new types of semantic 
universal. These might take the form of predicting that only such-and
such anaphoric mechanisms will be realized in all human languages. 
Moreover, in the spirit of this book, plausible constraints could be 
sought on representational semantics, providing the necessary creative 
tension. 

A suggestion as to the most profitable kind of background theory is 
found in van Benthem (1983b). Grammatical structures can be any 
non-circularly interpretable graphs (cf. Section 8.4.); for convenience, 
say, phrase structure trees. One then needs some processing strategy for 
these; in the simplest case, a processing order - for which various 
mathematical options exist ('depth first' or 'breadth first' modes of 
search; cf. Hintikka, 1979, Barwise and Perry, 1983). In combination 
with other basic acts, these might form the basis of the desired in
dependent account of anaphora and scope. In this section, a more 
traditional topic of this ilk will be discussed, however; in line with 
Chapter 7. 

Present dynamic accounts of interpretation revive an old question 
concerning the relation between grammaticality and interpretability. 
According to current wisdom, this is a non-issue: the two classes of 
expressions coincide, by definition. But in reality, there are divergences 
galore. Martina or Claudia met is grammatical, yet uninterpretable; 
while Lucas walks not is ungrammatical, yet interpretable. Thus, the 
interplay between independent accounts of interpretability and gram
maticality will provide interesting comparisons. One might even expect 
'completeness' and 'incompleteness' theorems of a kind. Thus, in a 
sense, we are back with the old issue of recognition versus generation 
of language. 

One simple pilot example will illustrate the idea. Let the 'gram
matical' sentences of propositional logic be the Polish ones. Now, call a 
string of symbols in ""1, /\, p, q, r 'interpretable' if it can be processed to 
a truth value expression by associating ""1, /\ to the right in the usual 
way. It is evident that the two classes of expression will coincide. Now, 
let us liberalize the notion of interpretability to the (plausible) case 
where we can also associate ""1, /\ to the left, and /\ in the middle: thus, 
operators can pick adjoining arguments in any way they please. (Com-
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pare the related Lambek treatment of this example in Section 7.4.) 
Though elementary, the following type of result is instructive: 

THEOREM. The interpretable expressions of propositional logic are 
precisely all permutations of the grammatical ones. 

Proof. First, one shows that a I f3 is interpretable if and only if af3 
is. Next, one observes that a sequence of proposition letters and 
conjunction symbols is interpretable if and only if there is precisely one 
more of the former than of the latter. 0 

Thus, this 'completeness result' assumes the form 

INT = TRANSF (GRAMM); 

reviving associations with the early days of transformational grammar. 
Indeed, there is a whole spectrum to be studied, between the extremes 
of TRANSF = 0 and TRANSF = PERM, the set of all permutations. 

A proper setting for such investigations is the earlier categorial 
grammar. For, this would seem to be the most suggestive account of 
actual interpretation, which also lends itself quite easily to progressive 
liberalizations of the association process. And that, of course, was 
exactly what was investigated in Chapter 7 - leading to several relevant 
results about the variety of constructions and readings which can be 
obtained for linguistic expressions. For instance, in the most general 
Lambek calculus, all permutations of interpretable phrases were them
selves interpretable (Section 7.3.). Even this extreme case has been 
claimed to occur in some human languages (cf. Bach, 1984; be it with 
one 'fixed point'). And of course, with our looser views of gram
maticality and interpretability, the stability of meaningfulness under an 
amount of permutation (whether grammaticality is lost or not), is a 
phenomenon which a linguistic semantics ought to explain, rather than 
ignore. But most natural languages will have their characteristic restric
tions here, reflecting the degree of rigidity of word order imposed. 
Thus, an interesting principle of linguistic classification arises, in terms 
of constraints on categorial type change rules, reflecting various degrees 
of interpretative freedom. 

Categorial grammar, of course, does not exhaust all dynamic aspects 
of natural language interpretation. For instance, higher-order 'inter
pretative strategies' for text and discourse have remained outside the 
scope of the present study altogether. Here is where the boundary 
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comes in sight between the study of denotations and that of linguistic 
'control', to borrow a term from computer science (cf. van Benthem, 
1986c). The next important task lies certainly straight ahead! 

10.5. CONCLUSION 

Contemporary semantics offers a set of issues, ansmg from solid 
research contributions, which invite further logical study. In this 
chapter, some of these have been arranged in one coherent picture of 
the nature of semantic theory. No doubt, many further suitable topics 
will arise in the near future. Thus, there is a subject matter for a logic of 
semantics. Moreover, its methods also lie at hand: we have used 
elements of universal algebra, model theory, finite combinatorics, and 
indeed any respectable formal method. It is the mixture of philo
sophical concerns about the structure and scope of semantics, and their 
translation into definite methodological questions, which constitutes 
one of the main charms of this foundational study. Chronic quarrels 
may be replaced by clear-cut questions for research. Nevertheless, I am 
well aware of the earlier controversy surrounding the utility of mathe
maticallinguistics, which could easily be raised here once again. On this 
point, I would only say this. Logical foundational studies do not replace 
empirical content. They rather make it clear what is valid a priori and 
what not, thus enabling us to focus more sharply on empirical content 
as well. The phenomenon of 'natural language' is a conglomerate of 
brute facts and eternal truths: indeed, the two poles of the human 
condition. 
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projection, 59 
propagation, 62 
proportionality, 160 
proposition, 72,104,148 
propositional logic, 58,116,134,213 
push-down automaton, 154, 160 

Quality, 19,87,102,106 
quantifier, 15, 25 
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Quantity, 16,25,56,60,79,100,106 
quasi-reflexivity, 39 
quasi-universality, 39 

Ramseyeliminability,183 
readings, 124, 130, 144 
recognizing capacity, 132 
reflexivity, 13, 39, 94 
reflexivization, 59, 71 
regularlanguage, 132, 151 
relevance, 89 
representation, 4, 176, 180 
Restriction, 57, 61 

Second-order quantifier, 31 
semantic data, 72, 180,204 
semantic mechanism, 70,147,211 
semantic theory, 184, 198 
semantic universal, 9, 41, 205, 211 
semi-linear, 163 
similarity, 82, 87, 170 
soundness, 187 
Square of Opposition, 12, 25, 44, 57, 

110,168 
strengthening the antecedent, 77 
structural rules, 130 
subjunctive logic, 81, 88, 95 
subordinating, 73,115 
syllogism, 14, 116 

Syllogistic, 42, 109 
symmetry, 13,39,94,99 
systematic gap, 15,41,206 

Tense, 101 
theoretical term, 181,204 
theory of types, 70,135,144,200 
thinning, 130 
thought-experiment, 33, 78, 88 
time, 75,101 
topic-neutral, 16, 25 
transitive verbs, 67,125,130 
transitivity, 13,39,94 
Tree of Numbers, 27, 47, 79, 83, 154, 

156,167,208 
truth definition, 90, 107, 184, 186, 189, 

192,205 
type change, 5, 60, 67, 68, 116, 125, 

135, 147 

Uniformity, 16,33,78,88,158,209 
upward mono tonicity, 12,77,193 

Variation, 135, 142 
Variety, 9, 26, 69, 78, 88,168 
Venn diagram, 6, 26, 56, 210 
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